Suppr超能文献

微梳驱动的硅光子系统。

Microcomb-driven silicon photonic systems.

机构信息

State Key Laboratory of Advanced Optical Communications System and Networks, School of Electronics, Peking University, Beijing, China.

Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, USA.

出版信息

Nature. 2022 May;605(7910):457-463. doi: 10.1038/s41586-022-04579-3. Epub 2022 May 18.

Abstract

Microcombs have sparked a surge of applications over the past decade, ranging from optical communications to metrology. Despite their diverse deployment, most microcomb-based systems rely on a large amount of bulky elements and equipment to fulfil their desired functions, which is complicated, expensive and power consuming. By contrast, foundry-based silicon photonics (SiPh) has had remarkable success in providing versatile functionality in a scalable and low-cost manner, but its available chip-based light sources lack the capacity for parallelization, which limits the scope of SiPh applications. Here we combine these two technologies by using a power-efficient and operationally simple aluminium-gallium-arsenide-on-insulator microcomb source to drive complementary metal-oxide-semiconductor SiPh engines. We present two important chip-scale photonic systems for optical data transmission and microwave photonics, respectively. A microcomb-based integrated photonic data link is demonstrated, based on a pulse-amplitude four-level modulation scheme with a two-terabit-per-second aggregate rate, and a highly reconfigurable microwave photonic filter with a high level of integration is constructed using a time-stretch approach. Such synergy of a microcomb and SiPh integrated components is an essential step towards the next generation of fully integrated photonic systems.

摘要

微梳状源在过去十年中引发了应用热潮,涵盖了从光通信到计量学的多个领域。尽管它们的应用多种多样,但大多数基于微梳状源的系统都依赖大量庞大的元件和设备来实现所需的功能,这不仅复杂、昂贵而且功耗大。相比之下,基于代工的硅光子学(SiPh)以可扩展且低成本的方式提供多功能性方面取得了显著成功,但它可用的基于芯片的光源缺乏并行化能力,这限制了 SiPh 的应用范围。在这里,我们通过使用高效且操作简单的砷化镓铝-绝缘体微梳状源来驱动互补金属氧化物半导体 SiPh 引擎,将这两种技术结合在一起。我们分别展示了两个重要的芯片级光子系统,用于光数据传输和微波光子学。基于脉冲幅度四电平调制方案,我们演示了基于微梳状源的集成光子数据链路,其聚合速率达到 2Tb/s,并且使用时间拉伸方法构建了高度可重构的微波光子滤波器,具有高度集成度。微梳状源和 SiPh 集成组件的这种协同作用是迈向下一代全集成光子系统的重要一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98a7/9117125/2a4794efced0/41586_2022_4579_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验