Ren Zhihao, Zhang Zixuan, Zhuge Yangyang, Xiao Zian, Xu Siyu, Zhou Jingkai, Lee Chengkuo
Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore.
Center for Intelligent Sensors and MEMS, National University of Singapore, Singapore, 117608, Singapore.
Nanomicro Lett. 2025 May 19;17(1):261. doi: 10.1007/s40820-025-01743-y.
The rise of large-scale artificial intelligence (AI) models, such as ChatGPT, DeepSeek, and autonomous vehicle systems, has significantly advanced the boundaries of AI, enabling highly complex tasks in natural language processing, image recognition, and real-time decision-making. However, these models demand immense computational power and are often centralized, relying on cloud-based architectures with inherent limitations in latency, privacy, and energy efficiency. To address these challenges and bring AI closer to real-world applications, such as wearable health monitoring, robotics, and immersive virtual environments, innovative hardware solutions are urgently needed. This work introduces a near-sensor edge computing (NSEC) system, built on a bilayer AlN/Si waveguide platform, to provide real-time, energy-efficient AI capabilities at the edge. Leveraging the electro-optic properties of AlN microring resonators for photonic feature extraction, coupled with Si-based thermo-optic Mach-Zehnder interferometers for neural network computations, the system represents a transformative approach to AI hardware design. Demonstrated through multimodal gesture and gait analysis, the NSEC system achieves high classification accuracies of 96.77% for gestures and 98.31% for gaits, ultra-low latency (< 10 ns), and minimal energy consumption (< 0.34 pJ). This groundbreaking system bridges the gap between AI models and real-world applications, enabling efficient, privacy-preserving AI solutions for healthcare, robotics, and next-generation human-machine interfaces, marking a pivotal advancement in edge computing and AI deployment.
诸如ChatGPT、DeepSeek等大规模人工智能(AI)模型以及自动驾驶车辆系统的兴起,显著拓展了人工智能的边界,使其能够在自然语言处理、图像识别和实时决策等方面执行高度复杂的任务。然而,这些模型需要巨大的计算能力,且通常是集中式的,依赖基于云的架构,在延迟、隐私和能源效率方面存在固有局限性。为应对这些挑战并使人工智能更贴近可穿戴健康监测、机器人技术和沉浸式虚拟环境等实际应用,迫切需要创新的硬件解决方案。这项工作引入了一种基于双层AlN/Si波导平台构建的近传感器边缘计算(NSEC)系统,以在边缘提供实时、节能的人工智能能力。该系统利用AlN微环谐振器的电光特性进行光子特征提取,并结合基于Si的热光马赫-曾德尔干涉仪进行神经网络计算,代表了一种变革性的人工智能硬件设计方法。通过多模态手势和步态分析得到验证,NSEC系统在手势分类准确率方面达到了96.77%,在步态分类准确率方面达到了98.31%,具有超低延迟(<10纳秒)和极低能耗(<0.34皮焦)。这个开创性的系统弥合了人工智能模型与实际应用之间的差距,为医疗保健、机器人技术和下一代人机界面实现了高效、保护隐私的人工智能解决方案,标志着边缘计算和人工智能部署方面的一项关键进展。