Homan Anne E, Laghaei Rozita, Dittrich Markus, Meriney Stephen D
Department of Neuroscience, Center for Neuroscience, University of Pittsburgh , Pittsburgh, Pennsylvania.
Biomedical Applications Group, Pittsburgh Supercomputing Center, Carnegie Mellon University , Pittsburgh, Pennsylvania.
J Neurophysiol. 2018 Feb 1;119(2):688-699. doi: 10.1152/jn.00510.2017. Epub 2017 Nov 22.
The spatiotemporal calcium dynamics within presynaptic neurotransmitter release sites (active zones, AZs) at the time of synaptic vesicle fusion is critical for shaping the dynamics of neurotransmitter release. Specifically, the relative arrangement and density of voltage-gated calcium channels (VGCCs) as well as the concentration of calcium buffering proteins can play a large role in the timing, magnitude, and plasticity of release by shaping the AZ calcium profile. However, a high-resolution understanding of the role of AZ structure in spatiotemporal calcium dynamics and how it may contribute to functional heterogeneity at an adult synapse is currently lacking. We demonstrate that synaptic delay varies considerably across, but not within, individual synapses at the frog neuromuscular junction (NMJ). To determine how elements of the AZ could contribute to this variability, we performed a parameter search using a spatially realistic diffusion reaction-based computational model of a frog NMJ AZ (Dittrich M, Pattillo JM, King JD, Cho S, Stiles JR, Meriney SD. Biophys J 104: 2751-2763, 2013; Ma J, Kelly L, Ingram J, Price TJ, Meriney SD, Dittrich M. J Neurophysiol 113: 71-87, 2015). We demonstrate with our model that synaptic delay is sensitive to significant alterations in the spatiotemporal calcium dynamics within an AZ at the time of release caused by manipulations of the density and organization of VGCCs or by the concentration of calcium buffering proteins. Furthermore, our data provide a framework for understanding how AZ organization and structure are important for understanding presynaptic function and plasticity. NEW & NOTEWORTHY The structure of presynaptic active zones (AZs) can play a large role in determining the dynamics of neurotransmitter release across many model preparations by influencing the spatiotemporal calcium dynamics within the AZ at the time of vesicle fusion. However, less is known about how different AZ structural schemes may influence the timing of neurotransmitter release. We demonstrate that variations in AZ structure create different spatiotemporal calcium profiles that, in turn, lead to differences in synaptic delay.
突触小泡融合时,突触前神经递质释放位点(活性区,AZs)内的时空钙动力学对于塑造神经递质释放的动力学至关重要。具体而言,电压门控钙通道(VGCCs)的相对排列和密度以及钙缓冲蛋白的浓度,通过塑造活性区钙分布,可在释放的时间、幅度和可塑性方面发挥重要作用。然而,目前缺乏对活性区结构在时空钙动力学中的作用以及它如何导致成年突触功能异质性的高分辨率理解。我们证明,在青蛙神经肌肉接头(NMJ)处,单个突触之间的突触延迟差异很大,但单个突触内部没有差异。为了确定活性区的元件如何导致这种变异性,我们使用基于空间真实扩散反应的青蛙NMJ活性区计算模型进行了参数搜索(迪特里希M,帕蒂洛JM,金JD,赵S,斯泰尔斯JR,梅里尼SD。《生物物理杂志》104:2751 - 2763,2013;马J,凯利L,英格拉姆J,普赖斯TJ,梅里尼SD,迪特里希M。《神经生理学杂志》113:71 - 87,2015)。我们用模型证明,突触延迟对释放时活性区内时空钙动力学的显著改变敏感,这些改变是由VGCCs的密度和组织或钙缓冲蛋白的浓度操纵引起的。此外,我们的数据为理解活性区组织和结构如何对理解突触前功能和可塑性很重要提供了一个框架。新发现与值得注意的是,突触前活性区(AZs)的结构通过影响小泡融合时活性区内的时空钙动力学,在确定许多模型制备中神经递质释放的动力学方面可发挥重要作用。然而,关于不同的活性区结构方案如何影响神经递质释放的时间知之甚少。我们证明,活性区结构的变化会产生不同的时空钙分布,进而导致突触延迟的差异。