Suppr超能文献

突触前活性区内时空钙动力学对青蛙神经肌肉接头处突触延迟的影响。

Impact of spatiotemporal calcium dynamics within presynaptic active zones on synaptic delay at the frog neuromuscular junction.

作者信息

Homan Anne E, Laghaei Rozita, Dittrich Markus, Meriney Stephen D

机构信息

Department of Neuroscience, Center for Neuroscience, University of Pittsburgh , Pittsburgh, Pennsylvania.

Biomedical Applications Group, Pittsburgh Supercomputing Center, Carnegie Mellon University , Pittsburgh, Pennsylvania.

出版信息

J Neurophysiol. 2018 Feb 1;119(2):688-699. doi: 10.1152/jn.00510.2017. Epub 2017 Nov 22.

Abstract

The spatiotemporal calcium dynamics within presynaptic neurotransmitter release sites (active zones, AZs) at the time of synaptic vesicle fusion is critical for shaping the dynamics of neurotransmitter release. Specifically, the relative arrangement and density of voltage-gated calcium channels (VGCCs) as well as the concentration of calcium buffering proteins can play a large role in the timing, magnitude, and plasticity of release by shaping the AZ calcium profile. However, a high-resolution understanding of the role of AZ structure in spatiotemporal calcium dynamics and how it may contribute to functional heterogeneity at an adult synapse is currently lacking. We demonstrate that synaptic delay varies considerably across, but not within, individual synapses at the frog neuromuscular junction (NMJ). To determine how elements of the AZ could contribute to this variability, we performed a parameter search using a spatially realistic diffusion reaction-based computational model of a frog NMJ AZ (Dittrich M, Pattillo JM, King JD, Cho S, Stiles JR, Meriney SD. Biophys J 104: 2751-2763, 2013; Ma J, Kelly L, Ingram J, Price TJ, Meriney SD, Dittrich M. J Neurophysiol 113: 71-87, 2015). We demonstrate with our model that synaptic delay is sensitive to significant alterations in the spatiotemporal calcium dynamics within an AZ at the time of release caused by manipulations of the density and organization of VGCCs or by the concentration of calcium buffering proteins. Furthermore, our data provide a framework for understanding how AZ organization and structure are important for understanding presynaptic function and plasticity. NEW & NOTEWORTHY The structure of presynaptic active zones (AZs) can play a large role in determining the dynamics of neurotransmitter release across many model preparations by influencing the spatiotemporal calcium dynamics within the AZ at the time of vesicle fusion. However, less is known about how different AZ structural schemes may influence the timing of neurotransmitter release. We demonstrate that variations in AZ structure create different spatiotemporal calcium profiles that, in turn, lead to differences in synaptic delay.

摘要

突触小泡融合时,突触前神经递质释放位点(活性区,AZs)内的时空钙动力学对于塑造神经递质释放的动力学至关重要。具体而言,电压门控钙通道(VGCCs)的相对排列和密度以及钙缓冲蛋白的浓度,通过塑造活性区钙分布,可在释放的时间、幅度和可塑性方面发挥重要作用。然而,目前缺乏对活性区结构在时空钙动力学中的作用以及它如何导致成年突触功能异质性的高分辨率理解。我们证明,在青蛙神经肌肉接头(NMJ)处,单个突触之间的突触延迟差异很大,但单个突触内部没有差异。为了确定活性区的元件如何导致这种变异性,我们使用基于空间真实扩散反应的青蛙NMJ活性区计算模型进行了参数搜索(迪特里希M,帕蒂洛JM,金JD,赵S,斯泰尔斯JR,梅里尼SD。《生物物理杂志》104:2751 - 2763,2013;马J,凯利L,英格拉姆J,普赖斯TJ,梅里尼SD,迪特里希M。《神经生理学杂志》113:71 - 87,2015)。我们用模型证明,突触延迟对释放时活性区内时空钙动力学的显著改变敏感,这些改变是由VGCCs的密度和组织或钙缓冲蛋白的浓度操纵引起的。此外,我们的数据为理解活性区组织和结构如何对理解突触前功能和可塑性很重要提供了一个框架。新发现与值得注意的是,突触前活性区(AZs)的结构通过影响小泡融合时活性区内的时空钙动力学,在确定许多模型制备中神经递质释放的动力学方面可发挥重要作用。然而,关于不同的活性区结构方案如何影响神经递质释放的时间知之甚少。我们证明,活性区结构的变化会产生不同的时空钙分布,进而导致突触延迟的差异。

相似文献

1
Impact of spatiotemporal calcium dynamics within presynaptic active zones on synaptic delay at the frog neuromuscular junction.
J Neurophysiol. 2018 Feb 1;119(2):688-699. doi: 10.1152/jn.00510.2017. Epub 2017 Nov 22.
2
New insights into short-term synaptic facilitation at the frog neuromuscular junction.
J Neurophysiol. 2015 Jan 1;113(1):71-87. doi: 10.1152/jn.00198.2014. Epub 2014 Sep 10.
4
Transmitter release site organization can predict synaptic function at the neuromuscular junction.
J Neurophysiol. 2018 Apr 1;119(4):1340-1355. doi: 10.1152/jn.00168.2017. Epub 2017 Dec 27.
5
Single Calcium Channel Nanodomains Drive Presynaptic Calcium Entry at Lamprey Reticulospinal Presynaptic Terminals.
J Neurosci. 2022 Mar 23;42(12):2385-2403. doi: 10.1523/JNEUROSCI.2207-21.2022. Epub 2022 Jan 21.
6
Active zone structure-function relationships at the neuromuscular junction.
Synapse. 2018 Nov;72(11):e22057. doi: 10.1002/syn.22057. Epub 2018 Aug 29.
9
Ca2+ from one or two channels controls fusion of a single vesicle at the frog neuromuscular junction.
J Neurosci. 2006 Dec 20;26(51):13240-9. doi: 10.1523/JNEUROSCI.1418-06.2006.

引用本文的文献

1
Age-Related Homeostatic Plasticity at Rodent Neuromuscular Junctions.
Cells. 2024 Oct 11;13(20):1684. doi: 10.3390/cells13201684.
3
Microphysiological Modeling of the Structure and Function of Neuromuscular Transmitter Release Sites.
Front Synaptic Neurosci. 2022 Jun 13;14:917285. doi: 10.3389/fnsyn.2022.917285. eCollection 2022.
5
Hypothesis Relating the Structure, Biochemistry and Function of Active Zone Material Macromolecules at a Neuromuscular Junction.
Front Synaptic Neurosci. 2022 Jan 5;13:798225. doi: 10.3389/fnsyn.2021.798225. eCollection 2021.
6
Comparison of Muscle MEPs From Transcranial Magnetic and Electrical Stimulation and Appearance of Reflexes in Horses.
Front Neurosci. 2020 Sep 25;14:570372. doi: 10.3389/fnins.2020.570372. eCollection 2020.
8
Presynaptic mechanisms controlling calcium-triggered transmitter release at the neuromuscular junction.
Curr Opin Physiol. 2018 Aug;4:15-24. doi: 10.1016/j.cophys.2018.03.004. Epub 2018 Mar 17.

本文引用的文献

1
The Nanophysiology of Fast Transmitter Release.
Trends Neurosci. 2016 Mar;39(3):183-197. doi: 10.1016/j.tins.2016.01.005. Epub 2016 Feb 16.
2
Variable priming of a docked synaptic vesicle.
Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):E1098-107. doi: 10.1073/pnas.1523054113. Epub 2016 Feb 8.
3
Presynaptic nanodomains: a tale of two synapses.
Front Cell Neurosci. 2015 Jan 26;8:455. doi: 10.3389/fncel.2014.00455. eCollection 2014.
4
Developmental tightening of cerebellar cortical synaptic influx-release coupling.
J Neurosci. 2015 Feb 4;35(5):1858-71. doi: 10.1523/JNEUROSCI.2900-14.2015.
6
Nanoscale distribution of presynaptic Ca(2+) channels and its impact on vesicular release during development.
Neuron. 2015 Jan 7;85(1):145-158. doi: 10.1016/j.neuron.2014.11.019. Epub 2014 Dec 18.
7
New insights into short-term synaptic facilitation at the frog neuromuscular junction.
J Neurophysiol. 2015 Jan 1;113(1):71-87. doi: 10.1152/jn.00198.2014. Epub 2014 Sep 10.
8
Evoked and spontaneous transmission favored by distinct sets of synapses.
Curr Biol. 2014 Mar 3;24(5):484-93. doi: 10.1016/j.cub.2014.01.022. Epub 2014 Feb 20.
9
Spontaneous and evoked release are independently regulated at individual active zones.
J Neurosci. 2013 Oct 30;33(44):17253-63. doi: 10.1523/JNEUROSCI.3334-13.2013.
10
An excess-calcium-binding-site model predicts neurotransmitter release at the neuromuscular junction.
Biophys J. 2013 Jun 18;104(12):2751-63. doi: 10.1016/j.bpj.2013.05.023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验