State Key Laboratory for Molecular and Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 10010, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.
J Neurosci. 2020 Apr 1;40(14):2817-2827. doi: 10.1523/JNEUROSCI.2002-19.2020. Epub 2020 Mar 2.
Perturbations to postsynaptic glutamate receptors (GluRs) trigger retrograde signaling to precisely increase presynaptic neurotransmitter release, maintaining stable levels of synaptic strength, a process referred to as homeostatic regulation. However, the structural change of homeostatic regulation remains poorly defined. At wild-type neuromuscular junction synapse, there is one Bruchpilot (Brp) ring detected by superresolution microscopy at active zones (AZs). In the present study, we report multiple Brp rings (i.e., multiple T-bars seen by electron microscopy) at AZs of both male and female larvae when GluRs are reduced. At -deficient neuromuscular junctions, quantal size was reduced but quantal content was increased, indicative of homeostatic presynaptic potentiation. Consistently, multiple Brp rings at AZs were observed in the two classic synaptic homeostasis models (i.e., mutant and pharmacological blockade of GluRIIA activity). Furthermore, postsynaptic overexpression of the cell adhesion protein Neuroligin 1 partially rescued multiple Brp rings phenotype. Our study thus supports that the formation of multiple Brp rings at AZs might be a structural basis for synaptic homeostasis. Synaptic homeostasis is a conserved fundamental mechanism to maintain efficient neurotransmission of neural networks. Active zones (AZs) are characterized by an electron-dense cytomatrix, which is largely composed of Bruchpilot (Brp) at the neuromuscular junction synapses. It is not clear how the structure of AZs changes during homeostatic regulation. To address this question, we examined the structure of AZs by superresolution microscopy and electron microscopy during homeostatic regulation. Our results reveal multiple Brp rings at AZs of glutamate receptor-deficient neuromuscular junction synapses compared with single Brp ring at AZs in wild type (WT). We further show that Neuroligin 1-mediated retrograde signaling regulates multiple Brp ring formation at glutamate receptor-deficient synapses. This study thus reveals a regulatory mechanism for synaptic homeostasis.
突触后谷氨酸受体 (GluR) 的改变会触发逆行信号,精确地增加突触前神经递质的释放,维持突触强度的稳定水平,这个过程被称为自稳态调节。然而,自稳态调节的结构变化仍未得到明确界定。在野生型神经肌肉接头突触中,超分辨率显微镜可在活性区 (AZ) 检测到一个 Bruchpilot (Brp) 环。在本研究中,我们报告了当 GluR 减少时,雄性和雌性幼虫的 AZ 中存在多个 Brp 环(即电子显微镜下看到的多个 T 型棒)。在 - 缺陷的神经肌肉接头中,量子大小减小但量子含量增加,表明存在自稳态突触前增强。一致地,在两个经典的突触自稳态模型(即突变和 GluRIIA 活性的药理学阻断)中也观察到 AZ 上的多个 Brp 环。此外,突触后 Neuroligin 1 的过表达部分挽救了多个 Brp 环表型。因此,我们的研究支持了 AZ 上多个 Brp 环的形成可能是突触自稳态的结构基础。突触自稳态是维持神经网络有效神经传递的保守基本机制。活性区 (AZ) 的特征是电子致密的细胞基质,该基质主要由神经肌肉接头突触中的 Bruchpilot (Brp) 组成。目前尚不清楚在自稳态调节过程中 AZ 的结构如何变化。为了解决这个问题,我们在自稳态调节过程中通过超分辨率显微镜和电子显微镜检查了 AZ 的结构。我们的结果显示,与野生型 (WT) 相比,谷氨酸受体缺陷型神经肌肉接头突触的 AZ 上存在多个 Brp 环,而 WT 中仅存在单个 Brp 环。我们进一步表明,Neuroligin 1 介导的逆行信号调节谷氨酸受体缺陷型突触上多个 Brp 环的形成。因此,本研究揭示了突触自稳态的一种调节机制。