Suppr超能文献

心电图有助于预测心脏手术患者术后室性心律失常:一项回顾性研究。

Electrocardiography is Useful to Predict Postoperative Ventricular Arrhythmia in Patients Undergoing Cardiac Surgery: A Retrospective Study.

作者信息

Li Weichao, Liu Weihua, Li Heng

机构信息

The Sixth Affiliated Hospital of Guangzhou Medical University, Department of Anesthesiology, Qingyuan People's Hospital, QingYuan, China.

出版信息

Front Physiol. 2022 May 2;13:873821. doi: 10.3389/fphys.2022.873821. eCollection 2022.

Abstract

Preoperative detection of high-/low-risk postoperative ventricular arrhythmia (POVA) patients using a noninvasive method is an important issue in the clinical setting. This study mainly aimed to determine the usefulness of several preoperative electrocardiographic (ECG) markers in the risk assessment of POVA with cardiac surgery. We enrolled 1024 consecutive patients undergoing cardiac surgery, and a total of 823 patients were included in the study. Logistic regression analysis determined preoperative ECG markers. A new risk predicting model were developed to predict occurrence of POVA, and the receiver operating characteristic curve (ROC) was used to validate this model. Of these, 337 patients experienced POVA, and 485 patients did not experience POVA in this retrospective study. Among 15 ECG markers, a univariate analysis found a strong association between POVA and preoperative VA, the R-wave in lead aVR, the QRS wave, index of cardiac electrophysiological balance (iCEB), QT interval corrected (QTc), Tpeak-Tend interval (Tpe) in lead V, the J wave in the inferolateral leads, pathological Q wave, and S+R>35 mm. Multivariate analysis showed that a preoperative J wave [adjusted odds ratio (AOR): 3.80; 95% CI: 1.88-7.66; < 0.001], Tpe >112.5-ms (AOR: 2.80; 95% CI: 1.57-4.99; < 0.001), and S+R >35 mm (AOR: 2.92; 95% CI: 1.29-6.60; = 0.01) were independently associated with POVA. A new risk predicting model were developed in predicting POVA. The ECG biomarkers including J wave, Tpe >112.5 ms, and S+R >35 mm were significantly predicted POVAs. A risk predicting model developed with electrocardiographic risk markers preoperatively predicted POVAs.

摘要

采用非侵入性方法对术后高/低风险室性心律失常(POVA)患者进行术前检测是临床中的一个重要问题。本研究主要旨在确定几种术前心电图(ECG)标志物在心脏手术POVA风险评估中的效用。我们纳入了1024例连续接受心脏手术的患者,最终共有823例患者纳入研究。通过逻辑回归分析确定术前ECG标志物。开发了一种新的风险预测模型来预测POVA的发生,并使用受试者工作特征曲线(ROC)对该模型进行验证。在这项回顾性研究中,其中337例患者发生了POVA,485例患者未发生POVA。在15种ECG标志物中,单因素分析发现POVA与术前室性心律失常、aVR导联R波、QRS波、心脏电生理平衡指数(iCEB)、校正QT间期(QTc)、V导联Tpeak-Tend间期(Tpe)、下外侧导联J波、病理性Q波以及S+R>35mm之间存在强关联。多因素分析显示,术前J波[校正比值比(AOR):3.80;95%置信区间(CI):1.88-7.66;P<0.001]、Tpe>112.5毫秒(AOR:2.80;95%CI:1.57-4.99;P<0.001)以及S+R>35mm(AOR:2.92;95%CI:1.29-6.60;P=0.01)与POVA独立相关。开发了一种新的预测POVA的风险预测模型。包括J波、Tpe>112.5毫秒和S+R>35mm在内的ECG生物标志物可显著预测POVA。术前利用心电图风险标志物开发的风险预测模型可预测POVA。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43b8/9108335/5775aaf83ca6/fphys-13-873821-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验