Suppr超能文献

铅管水垢分析的整体方法:重要性、方法及局限性。

A holistic approach to lead pipe scale analysis: Importance, methodology, and limitations.

作者信息

Harmon Stephen M, Tully Jennifer, DeSantis Michael K, Schock Michael R, Triantafyllidou Simoni, Lytle Darren A

机构信息

Office of Research and Development, Center for Environmental Solutions & Emergency Response, Water Infrastructure Division, Drinking Water Management Branch, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA.

出版信息

AWWA Water Sci. 2022 Mar 17;4(2):0. doi: 10.1002/aws2.1278.

Abstract

With lead service lines (LSLs) remaining for decades to come, scale analyses are critical to helping limit lead exposure from drinking water. This laboratory has used an integrated suite of analytical techniques to characterize the elemental composition, mineral identification, and physical features of scales, helping the water industry to evaluate, predict, and reduce lead corrosion. The methods used in this laboratory to prepare and analyze the LSL scale, and guidance to achieving reliable and meaningful results, are described. Primary methods include the following: optical microscopy, powder X-ray diffraction, inductively coupled plasma spectroscopy, X-ray fluorescence, scanning electron microscopy with energy dispersive spectroscopy, combustion and coulometric analyses of C and S, and X-ray absorption spectroscopy. Examples of associated pitfalls and ways to avoid them are provided, including pipe excavation/transport, sample preparation, analysis, and data interpretation. Illustrative examples are presented of practical scale analysis questions that could be answered by combinations of pipe scale analyses.

摘要

由于铅质供水管线(LSLs)仍将存在数十年,水垢分析对于帮助限制饮用水中的铅暴露至关重要。该实验室使用了一套综合分析技术来表征水垢的元素组成、矿物鉴定和物理特征,帮助水行业评估、预测和减少铅腐蚀。本文描述了该实验室用于制备和分析LSL水垢的方法,以及获得可靠且有意义结果的指导。主要方法包括:光学显微镜、粉末X射线衍射、电感耦合等离子体光谱、X射线荧光、带能谱分析的扫描电子显微镜、C和S的燃烧及库仑分析,以及X射线吸收光谱。文中提供了相关陷阱及避免方法的示例,包括管道挖掘/运输、样品制备、分析和数据解释。还给出了实际水垢分析问题的示例,这些问题可通过管道水垢分析的组合来解答。

相似文献

1
2
Identification and distribution of vanadinite (Pb5(V5+O4)3Cl) in lead pipe corrosion by-products.
Environ Sci Technol. 2009 Jun 15;43(12):4412-8. doi: 10.1021/es900501t.
4
Water quality-pipe deposit relationships in Midwestern lead pipes.
AWWA Water Sci. 2019 Mar 4;1(2). doi: https://doi.org/10.1002/aws2.1127.
5
Identifying effects of pipe material, hydraulic condition, and water composition on elemental accumulation in pipe corrosion scales.
Environ Sci Pollut Res Int. 2019 Jul;26(19):19906-19914. doi: 10.1007/s11356-019-05401-w. Epub 2019 May 15.
6
Effect of pipe corrosion scales on chlorine dioxide consumption in drinking water distribution systems.
Water Res. 2008 Jan;42(1-2):129-36. doi: 10.1016/j.watres.2007.07.054. Epub 2007 Aug 28.
7
Scale Formation Under Blended Phosphate Treatment for a Utility With Lead Pipes.
J Am Water Works Assoc. 2017 Nov 1;109(11):E464-E478. doi: 10.5942/jawwa.2017.109.0121.
8
Lead service line identification: A review of strategies and approaches.
AWWA Water Sci. 2021 May;3(2):1-19. doi: 10.1002/aws2.1226.
9
Lead pipe scale analysis using broad-beam argon ion milling to elucidate drinking water corrosion.
Microsc Microanal. 2011 Apr;17(2):284-91. doi: 10.1017/S1431927610094353. Epub 2011 Feb 1.

引用本文的文献

1
Calcium Phosphate Precipitation as an Unintended Consequence of Phosphate Dosing to High-pH Water.
Environ Eng Sci. 2024 May;41(5):171-179. doi: 10.1089/ees.2023.0190.
3
A literature review of bench top and pilot lead corrosion assessment studies.
AWWA Water Sci. 2023 Mar 24;5(2). doi: 10.1002/aws2.1324.
4
Spherulitic Lead Calcium Apatite Minerals in Lead Water Pipes Exposed to Phosphate-Dosed Tap Water.
Environ Sci Technol. 2023 Mar 28;57(12):4796-4805. doi: 10.1021/acs.est.2c04538. Epub 2023 Mar 15.

本文引用的文献

1
Influence of drinking water quality on the formation of corrosion scales in lead-bearing drinking water distribution systems.
J Environ Sci Health A Tox Hazard Subst Environ Eng. 2021;56(12):1316-1327. doi: 10.1080/10934529.2021.1989938. Epub 2021 Oct 18.
2
Orthophosphate Interactions with Destabilized PbO Scales.
Environ Sci Technol. 2020 Nov 17;54(22):14302-14311. doi: 10.1021/acs.est.0c03027. Epub 2020 Oct 26.
3
Scale Formation Under Blended Phosphate Treatment for a Utility With Lead Pipes.
J Am Water Works Assoc. 2017 Nov 1;109(11):E464-E478. doi: 10.5942/jawwa.2017.109.0121.
4
Design and Testing of USEPA'S Flint Pipe Rig for Corrosion Control Evaluation.
J Am Water Works Assoc. 2018 Oct 1;110(10):E16-E37. doi: 10.1002/awwa.1127.
5
Water quality-pipe deposit relationships in Midwestern lead pipes.
AWWA Water Sci. 2019 Mar 4;1(2). doi: https://doi.org/10.1002/aws2.1127.
6
Effect of Aluminum on Lead Release to Drinking Water from Scales of Corrosion Products.
Environ Sci Technol. 2020 May 19;54(10):6142-6151. doi: 10.1021/acs.est.0c00738. Epub 2020 Apr 27.
7
The Ability of Phosphate To Prevent Lead Release from Pipe Scale When Switching from Free Chlorine to Monochloramine.
Environ Sci Technol. 2020 Jan 21;54(2):879-888. doi: 10.1021/acs.est.9b06019. Epub 2019 Dec 13.
8
X-Ray Microanalysis in the Variable Pressure (Environmental) Scanning Electron Microscope.
J Res Natl Inst Stand Technol. 2002 Dec 1;107(6):567-603. doi: 10.6028/jres.107.048. Print 2002 Nov-Dec.
9
Parts per Million Powder X-ray Diffraction.
Anal Chem. 2015 Nov 3;87(21):10950-5. doi: 10.1021/acs.analchem.5b02758. Epub 2015 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验