Gao Yanxin, Suh Min-Jeong, Kim Jae-Hong, Yu Gang
Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, China.
Department of Chemical and Environmental Engineering and Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, Connecticut 06511, United States.
ACS Appl Mater Interfaces. 2022 Jun 1;14(21):24351-24362. doi: 10.1021/acsami.2c03607. Epub 2022 May 19.
The development of mixed-linker metal-organic frameworks (MOFs) is an efficient strategy to improve the performance of MOFs. Herein, we successfully integrate tetrakis(4-carboxyphenyl)porphyrin (TCPP) into different Zr-MOFs via a facile one-pot solvothermal synthesis while preserving the integrity of their frameworks. The functional groups, length of primary linkers, and the inner pore structure significantly affected the properties of the synthesized TCPP@MOFs, such as surface area, average pore size, and O productivity. Among them, TCPP@PCN-777 demonstrated the largest surface area (2386 cm/g, as measured by N uptake) and the highest O generation rate (1.15 h, [O] = 2.66 × 10 M) under irradiation. The TCPP loading was also shown to affect the crystal phase, morphology, surface area, and photochemical properties of the synthesized MOFs. Therefore, TCPP@PCN-777s with various TCPP loadings were synthesized to investigate the optimum loading. The optimized TCPP@MOF, TCPP@PCN-777-30, was evaluated for its removal of model contaminant ranitidine (RND) through both adsorption and photodegradation. TCPP@PCN-777-30 showed a higher adsorption capacity toward RND than both the parent MOF (PCN-777) and commercially available activated carbon, and effectively degraded RND in aqueous solution (>99% photodegradation in 1 h). With irradiation, TCPP@PCN-777-30 showed a minimal loss in adsorption efficiency over four consecutive treatment cycles, confirming the reusability of the material enabled through the incorporation of TCPP into the MOF structure. This work not only developed an efficient multifunctional material for environmental remediation but also forwarded knowledge on the effect of linker environment (i.e., functional groups, framework structure, and linker ratio) on the properties of TCPP@MOFs to guide future research on mixed-linker MOFs.
混合连接体金属有机框架材料(MOFs)的开发是提高MOFs性能的有效策略。在此,我们通过简便的一锅溶剂热合成法成功地将四(4-羧基苯基)卟啉(TCPP)整合到不同的Zr-MOFs中,同时保持其框架结构的完整性。官能团、主连接体的长度和内部孔结构显著影响合成的TCPP@MOFs的性能,如表面积、平均孔径和O生成率。其中,TCPP@PCN-777在照射下表现出最大的表面积(通过N吸附测量为2386 cm/g)和最高的O生成率(1.15 h,[O]=2.66×10 M)。TCPP负载量也显示出会影响合成MOFs的晶相、形态、表面积和光化学性质。因此,合成了具有不同TCPP负载量的TCPP@PCN-777,以研究最佳负载量。对优化后的TCPP@MOF,即TCPP@PCN-777-30,通过吸附和光降解两种方式对其去除模型污染物雷尼替丁(RND)的性能进行了评估。TCPP@PCN-777-30对RND的吸附能力高于母体MOF(PCN-777)和市售活性炭,并能有效降解水溶液中的RND(1小时内光降解率>99%)。在照射下,TCPP@PCN-777-30在连续四个处理循环中的吸附效率损失最小,证实了通过将TCPP纳入MOF结构而实现的材料可重复使用性。这项工作不仅开发了一种用于环境修复的高效多功能材料,还推进了关于连接体环境(即官能团、框架结构和连接体比例)对TCPP@MOFs性能影响的知识,以指导未来对混合连接体MOFs的研究。