Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
Integr Comp Biol. 2022 Aug 25;62(2):237-251. doi: 10.1093/icb/icac045.
The gut microbial communities of mammals provide numerous benefits to their hosts. However, given the recent development of the microbiome field, we still lack a thorough understanding of the variety of ecological and evolutionary factors that structure these communities across species. Metabarcoding is a powerful technique that allows for multiple microbial ecology questions to be investigated simultaneously. Here, we employed DNA metabarcoding techniques, predictive metagenomics, and culture-dependent techniques to inventory the gut microbial communities of several species of rodent collected from the same environment that employ different natural feeding strategies [granivorous pocket mice (Chaetodipus penicillatus); granivorous kangaroo rats (Dipodomys merriami); herbivorous woodrats (Neotoma albigula); omnivorous cactus mice (Peromyscus eremicus); and insectivorous grasshopper mice (Onychomys torridus)]. Of particular interest were shifts in gut microbial communities in rodent species with herbivorous and insectivorous diets, given the high amounts of indigestible fibers and chitinous exoskeleton in these diets, respectively. We found that herbivorous woodrats harbored the greatest microbial diversity. Granivorous pocket mice and kangaroo rats had the highest abundances of the genus Ruminococcus and highest predicted abundances of genes related to the digestion of fiber, representing potential adaptations in these species to the fiber content of seeds and the limitations to digestion given their small body size. Insectivorous grasshopper mice exhibited the greatest inter-individual variation in the membership of their microbiomes, and also exhibited the highest predicted abundances of chitin-degrading genes. Culture-based approaches identified 178 microbial isolates (primarily Bacillus and Enterococcus), with some capable of degrading cellulose and chitin. We observed several instances of strain-level diversity in these metabolic capabilities across isolates, somewhat highlighting the limitations and hidden diversity underlying DNA metabarcoding techniques. However, these methods offer power in allowing the investigation of several questions concurrently, thus enhancing our understanding of gut microbial ecology.
哺乳动物的肠道微生物群落为其宿主提供了众多益处。然而,鉴于微生物组领域的最新发展,我们仍然缺乏对物种间构建这些群落的各种生态和进化因素的全面理解。宏条形码技术是一种强大的技术,可同时调查多个微生物生态学问题。在这里,我们采用 DNA 宏条形码技术、预测宏基因组学和依赖培养的技术,对来自同一环境、采用不同自然摄食策略的几种啮齿动物(食谷囊鼠(Chaetodipus penicillatus);食谷跳鼠(Dipodomys merriami);食草林鼠(Neotoma albigula);杂食仙人掌鼠(Peromyscus eremicus);和食虫草跳鼠(Onychomys torridus))的肠道微生物群落进行了编目。特别感兴趣的是具有草食性和食虫性饮食的啮齿动物物种的肠道微生物群落的变化,因为这些饮食分别含有大量不可消化的纤维和几丁质外骨骼。我们发现,食草性林鼠具有最大的微生物多样性。食谷囊鼠和跳鼠具有最高的瘤胃球菌属丰度和与纤维消化相关的基因的最高预测丰度,代表这些物种对种子纤维含量的潜在适应以及由于其体型较小而对消化的限制。食虫草跳鼠的微生物组成员个体间变化最大,并且具有最高的预测几丁质降解基因丰度。基于培养的方法鉴定了 178 个微生物分离株(主要是芽孢杆菌属和肠球菌属),其中一些能够降解纤维素和几丁质。我们观察到这些代谢能力在分离株中存在菌株水平的多样性,这在一定程度上突出了 DNA 宏条形码技术的局限性和隐藏的多样性。然而,这些方法在同时调查多个问题方面具有强大的功能,从而增强了我们对肠道微生物生态的理解。