Suppr超能文献

多变量生物标志物方法在识别慢性肾脏病中的新发心力衰竭:来自慢性肾功能不全队列研究的结果。

Multi-variable biomarker approach in identifying incident heart failure in chronic kidney disease: results from the Chronic Renal Insufficiency Cohort study.

机构信息

Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.

Minneapolis Heart Institute, Minneapolis, MN, USA.

出版信息

Eur J Heart Fail. 2022 Jun;24(6):988-995. doi: 10.1002/ejhf.2543. Epub 2022 May 31.

Abstract

AIMS

Heart failure (HF) is one of the leading causes of cardiovascular morbidity and mortality in the ever-growing population of patients with chronic kidney disease (CKD). There is a need to enhance early prediction to initiate treatment in CKD. We sought to study the feasibility of a multi-variable biomarker approach to predict incident HF risk in CKD.

METHODS AND RESULTS

We examined 3182 adults enrolled in the Chronic Renal Insufficiency Cohort (CRIC) without prevalent HF who underwent serum/plasma assays for 11 blood biomarkers at baseline visit (B-type natriuretic peptide [BNP], CXC motif chemokine ligand 12, fibrinogen, fractalkine, high-sensitivity C-reactive protein, myeloperoxidase, high-sensitivity troponin T (hsTnT), fibroblast growth factor 23 [FGF23], neutrophil gelatinase-associated lipocalin, fetuin A, aldosterone). The population was randomly divided into derivation (n = 1629) and validation (n = 1553) cohorts. Biomarkers that were associated with HF after adjustment for established HF risk factors were combined into an overall biomarker score (number of biomarkers above the Youden's index cut-off value). Cox regression was used to explore the predictive role of a biomarker panel to predict incident HF. A total of 411 patients developed incident HF at a median follow-up of 7 years. In the derivation cohort, four biomarkers were associated with HF (BNP, FGF23, fibrinogen, hsTnT). In a model combining all four biomarkers, BNP (hazard ratio [HR] 2.96 [95% confidence interval 2.14-4.09]), FGF23 (HR 1.74 [1.30-2.32]), fibrinogen (HR 2.40 [1.74-3.30]), and hsTnT (HR 2.89 [2.06-4.04]) were associated with incident HF. The incidence of HF increased with the biomarker score, to a similar degree in both derivation and validation cohorts: from 2.0% in score of 0% to 46.6% in score of 4 in the derivation cohort to 2.4% in score of 0% to 43.5% in score of 4 in the validation cohort. A model incorporating biomarkers in addition to clinical factors reclassified risk in 601 (19%) participants (352 [11%] participants to higher risk and 249 [8%] to lower risk) compared with clinical risk model alone (net reclassification improvement of 0.16).

CONCLUSION

A basic panel of four blood biomarkers (BNP, FGF23, fibrinogen, and hsTnT) can be used as a standalone score to predict incident HF in patients with CKD allowing early identification of patients at high-risk for HF. Addition of biomarker score to clinical risk model modestly reclassifies HF risk and slightly improves discrimination.

摘要

目的

心力衰竭(HF)是慢性肾脏病(CKD)患者心血管发病率和死亡率不断上升的主要原因之一。需要提高早期预测能力,以便在 CKD 患者中及早开始治疗。我们试图研究采用多变量生物标志物方法预测 CKD 患者发生 HF 的风险。

方法和结果

我们对无 HF 既往史的慢性肾不全队列研究(CRIC)中 3182 名成年人进行了研究,他们在基线检查时接受了 11 种血液生物标志物(B 型利钠肽[BNP]、CXC 趋化因子配体 12、纤维蛋白原、 fractalkine、高敏 C 反应蛋白、髓过氧化物酶、高敏肌钙蛋白 T(hsTnT)、成纤维细胞生长因子 23[FGF23]、中性粒细胞明胶酶相关脂质运载蛋白、胎球蛋白 A、醛固酮)的检测。该人群被随机分为推导(n=1629)和验证(n=1553)队列。对与 HF 相关的生物标志物进行调整后,将与已建立的 HF 危险因素相关的生物标志物合并为一个总体生物标志物评分(高于 Youden 指数截断值的生物标志物数量)。Cox 回归用于探讨生物标志物组合预测 HF 发生的作用。中位随访 7 年后,共有 411 名患者发生了 HF。在推导队列中,有 4 种生物标志物与 HF 相关(BNP、FGF23、纤维蛋白原、hsTnT)。在一个结合所有 4 种生物标志物的模型中,BNP(危险比[HR]2.96[95%置信区间 2.14-4.09])、FGF23(HR 1.74[1.30-2.32])、纤维蛋白原(HR 2.40[1.74-3.30])和 hsTnT(HR 2.89[2.06-4.04])与 HF 事件相关。HF 的发生率随着生物标志物评分的增加而增加,在推导和验证队列中均达到相似程度:从推导队列中评分 0%的 2.0%到评分 4 的 46.6%,再到验证队列中评分 0%的 2.4%到评分 4 的 43.5%。与单独的临床风险模型相比,纳入生物标志物加临床因素的模型重新分类了 601 名(19%)参与者的风险(352 名[11%]参与者风险更高,249 名[8%]参与者风险更低)(净重新分类改善 0.16)。

结论

一个基本的四项血液生物标志物(BNP、FGF23、纤维蛋白原和 hsTnT)组合可作为单独的评分用于预测 CKD 患者的 HF 事件发生情况,从而可早期识别 HF 高危患者。将生物标志物评分加入临床风险模型可适度重新分类 HF 风险,并略微提高区分度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验