Suppr超能文献

用于锂存储的具有协同界面电荷传输和结构完整性的空间受限锰基异质结构的合理设计

Rational Design of Space-Confined Mn-Based Heterostructures with Synergistic Interfacial Charge Transport and Structural Integrity for Lithium Storage.

作者信息

Zhang Xiande, He Xin, Yin Shan, Cai Wenlong, Wang Qian, Wu Hao, Wu Kaipeng, Zhang Yun

机构信息

State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China.

College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China.

出版信息

Inorg Chem. 2022 May 30;61(21):8366-8378. doi: 10.1021/acs.inorgchem.2c01104. Epub 2022 May 19.

Abstract

Manganese-based compounds are expected to become promising candidates for lithium-ion battery anodes by virtue of their high theoretical specific capacity and low conversion potential. However, their application is hindered by their inferior electrical conductivity and drastic volume variations. In this work, a unique heterostructure composed of MnO and MnS spatially confined in pyrolytic carbon microspheres (MnO@MnS/C) was synthesized through an integrated solvothermal method, calcination, and low-temperature vulcanization technology. In this architecture, heterostructured MnO@MnS nanoparticles (∼10 nm) are uniformly embedded into the carbonaceous microsphere matrix to maintain the structural stability of the composite. Benefiting from the combination of structural and compositional features, the MnO@MnS/C enables abundance in electrochemically active sites, alleviated volumetric variation, a rich conductive network, and enhanced lithium-ion diffusion kinetics, thus yielding remarkable rate capability (1235 mAh·g at 0.2 A·g and 608 mAh·g at 3.2 A·g) and exceptional cycling stability (522 mAh·g after 2000 cycles at 3.0 A·g) as a competitive anode material for lithium-ion batteries. Density functional theory calculations unveil that the heterostructure promotes the transfer of electrons with improved conductivity and also accelerates the migration of lithium ions with reduced polarization resistance. This combined with the enhancement brought by spatial confinement endows the MnO@MnS/C with remarkable lithium storage performance.

摘要

基于锰的化合物因其高理论比容量和低转化电位,有望成为锂离子电池负极的有前途的候选材料。然而,其应用受到较差的电导率和剧烈的体积变化的阻碍。在这项工作中,通过综合溶剂热法、煅烧和低温硫化技术,合成了一种独特的异质结构,该结构由空间限制在热解碳微球中的MnO和MnS组成(MnO@MnS/C)。在这种结构中,异质结构的MnO@MnS纳米颗粒(约10纳米)均匀地嵌入到碳质微球基质中,以保持复合材料的结构稳定性。受益于结构和成分特征的结合,MnO@MnS/C具有丰富的电化学活性位点、减轻的体积变化、丰富的导电网络和增强的锂离子扩散动力学,因此作为锂离子电池的竞争性负极材料,具有出色的倍率性能(在0.2 A·g时为1235 mAh·g,在3.2 A·g时为608 mAh·g)和优异的循环稳定性(在3.0 A·g下2000次循环后为522 mAh·g)。密度泛函理论计算表明,这种异质结构促进了电子转移,提高了电导率,同时加速了锂离子迁移,降低了极化电阻。这与空间限制带来的增强作用相结合,赋予了MnO@MnS/C卓越的锂存储性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验