Department of Advanced Energy Materials, College of Materials Science and Engineering , Sichuan University , Chengdu 610064 , P. R. China.
Research Institute of Natural Gas Technology , Petrochina Southwest Oil & Gas Field Company , Chengdu 610213 , P. R. China.
Inorg Chem. 2018 Jul 2;57(13):7993-8001. doi: 10.1021/acs.inorgchem.8b01156. Epub 2018 Jun 8.
An intriguingly nanostructured composite comprising of MnO/MnS nanoparticles embedded in an N,S-codoped carbon frame (MnO/MnS@C) is designed here and employed as a promising Li-ion storage electrode material to address the challenge of inferior conductivity and large volume change toward manganese chalcogenide-based anode. Combining with the merits of coherent MnO/MnS, elaborately hierarchical-porous architecture and N,S-codoped carbon frame, this composite exhibits high lithium-ion storage capacity (591 mAh g at 0.1 A g) and remarkable cyclic performance (628 mAh g at 1 A g over 330 cycles). It is revealed via quantitative analysis that capacitive effect is also responsible for Li storage except ordinary diffusion-controlled mechanism, which consists of faradaic surface pseudocapacitance rooting from further oxidation of Mn and nonfaradaic interfacial double-layer capacitance stemming from the charge separation at the MnO/MnS phase boundary. As a dynamic equilibrium for diffusion-controlled lithium storage, such capacitive contribution leads to ever-increasing Li-ion storage. The delicate construction endows an improved ion/electron transport kinetics, increased electrode/electrolyte contact area and plentifully heterogeneous interface, accounting for the high capacity and long-cycle stability.
这里设计了一种由嵌入 N,S 共掺杂碳框架中的 MnO/MnS 纳米颗粒组成的有趣的纳米结构复合材料(MnO/MnS@C),并将其用作有前途的锂离子存储电极材料,以解决基于锰的硫属化物的较差导电性和大体积变化的挑战。
这种复合材料结合了 MnO/MnS 的优点、精心设计的分级多孔结构和 N,S 共掺杂碳框架,表现出高的锂离子存储容量(在 0.1 A g 下为 591 mAh g)和出色的循环性能(在 1 A g 下 330 次循环后为 628 mAh g)。
通过定量分析揭示,除了普通的扩散控制机制外,电容效应也有助于锂的存储,该机制包括源于 Mn 进一步氧化的法拉第表面赝电容和源于 MnO/MnS 相界处电荷分离的非法拉第界面双层电容。作为扩散控制的锂离子存储的动态平衡,这种电容贡献导致越来越多的锂离子存储。
精细的结构赋予了改进的离子/电子传输动力学、增加的电极/电解质接触面积和丰富的异质界面,这是实现高容量和长循环稳定性的原因。