Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, AL: 2203 B, 251 Sir Frederick Banting Driveway, Ottawa, Ontario K1A 0K9, Canada.
Laboratoire Biogéochimie des Contaminants Organiques, Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Rue de l'Ile d'Yeu, BP 21105, Nantes, Cedex 3 44311, France.
J Am Soc Mass Spectrom. 2022 Jun 1;33(6):981-995. doi: 10.1021/jasms.2c00052. Epub 2022 May 19.
Phthalates have been studied due to their linkages with adverse developmental effects; however, metabolites of this class of compounds are undercharacterized and are poorly captured by traditional targeted analysis. In this study, we developed a nontargeted analysis approach for identifying and classifying phthalate metabolites based on a comprehensive study of their fragmentation pathways in electrospray ionization (ESI) quadrupole-time-of-flight mass spectrometry (QTOF-MS). This approach identifies molecular features in the data as phthalate metabolites via the detection of three structurally significant fragment ions. Then phthalate metabolites are classified into four types based on the presence of additional fragment ions specific to each type. Cleavage mechanisms for each class of phthalate metabolite are proposed based on fragmentation patterns generated at various collision energies (CE). All of the tested phthalate metabolites including oxidative and nonoxidative metabolites produced a fragment ion at / 121.0295, representing the deprotonated benzoate ion [CHCOO]. Most tested phthalate metabolites can produce a specific ion at / 147.0088, the deprotonated -phthalic anhydride ion. However, phthalate carboxylate metabolites can only produce the [M-H-R] ion at / 165.0193 and do not produce the fragment at / 147.0088. Other phthalate oxidative metabolites (hydroxyl- and oxo-) follow a different fragmentation pathway than nonoxidative metabolites. With this workflow, eight unknown phthalate metabolites were putatively identified in pooled urine, with one identified as a previously unreported metabolite by a combination of the MS/MS spectrum and the predicted retention time. Method detection limits for phthalate metabolites in urine were also estimated.
邻苯二甲酸酯由于与不良发育影响有关而受到研究关注;然而,该类化合物的代谢物特征描述不足,并且传统的靶向分析方法也无法很好地捕捉到它们。在这项研究中,我们开发了一种非靶向分析方法,用于根据电喷雾电离(ESI)四极杆飞行时间质谱(QTOF-MS)中它们的碎裂途径的综合研究来识别和分类邻苯二甲酸酯代谢物。该方法通过检测三个结构上重要的碎片离子,在数据中将分子特征识别为邻苯二甲酸酯代谢物。然后根据每种类型特有的额外碎片离子的存在,将邻苯二甲酸酯代谢物分为四类。基于在各种碰撞能量(CE)下生成的碎裂模式,提出了每种类别邻苯二甲酸酯代谢物的裂解机制。所有测试的邻苯二甲酸酯代谢物,包括氧化和非氧化代谢物,均产生一个在 / 121.0295 处的碎片离子,表示去质子化的苯甲酸离子[CHCOO]。大多数测试的邻苯二甲酸酯代谢物都可以在 / 147.0088 处产生一个特定的离子,即去质子化的邻苯二甲酸酐离子。然而,邻苯二甲酸羧酸盐代谢物只能在 / 165.0193 处产生[M-H-R]离子,而不会产生在 / 147.0088 处的碎片。其他邻苯二甲酸氧化代谢物(羟基和氧代)遵循与非氧化代谢物不同的碎裂途径。使用此工作流程,在混合尿液中推测出 8 种未知的邻苯二甲酸酯代谢物,其中一种通过 MS/MS 谱和预测的保留时间的组合被鉴定为以前未报道的代谢物。还估计了尿液中邻苯二甲酸酯代谢物的方法检测限。