文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种可解释的机器学习模型,用于预测卵巢刺激过程中触发扳机的最佳日期。

An interpretable machine learning model for predicting the optimal day of trigger during ovarian stimulation.

机构信息

Alife Health, Inc., Cambridge, Massachusetts.

Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco.

出版信息

Fertil Steril. 2022 Jul;118(1):101-108. doi: 10.1016/j.fertnstert.2022.04.003. Epub 2022 May 16.


DOI:10.1016/j.fertnstert.2022.04.003
PMID:35589417
Abstract

OBJECTIVE: To develop an interpretable machine learning model for optimizing the day of trigger in terms of mature oocytes (MII), fertilized oocytes (2PNs), and usable blastocysts. DESIGN: Retrospective study. SETTING: A group of three assisted reproductive technology centers in the United States. PATIENT(S): Patients undergoing autologous in vitro fertilization cycles from 2014 to 2020 (n = 30,278). INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Average number of MII oocytes, 2PNs, and usable blastocysts. RESULT(S): A set of interpretable machine learning models were developed using linear regression with follicle counts and estradiol levels. When using the model to make day-by-day predictions of trigger or continuing stimulation, possible early and late triggers were identified in 48.7% and 13.8% of cycles, respectively. After propensity score matching, patients with early triggers had on average 2.3 fewer MII oocytes, 1.8 fewer 2PNs, and 1.0 fewer usable blastocysts compared with matched patients with on-time triggers, and patients with late triggers had on average 2.7 fewer MII oocytes, 2.0 fewer 2PNs, and 0.7 fewer usable blastocysts compared with matched patients with on-time triggers. CONCLUSION(S): This study demonstrates that it is possible to develop an interpretable machine learning model for optimizing the day of trigger. Using our model has the potential to improve outcomes for many in vitro fertilization patients.

摘要

目的:开发一种可解释的机器学习模型,以优化触发日,从而获得更多成熟卵子(MII)、受精卵(2PN)和可用胚胎。

设计:回顾性研究。

地点:美国的三家辅助生殖技术中心。

患者:2014 年至 2020 年接受自体体外受精周期的患者(n=30278)。

干预:无。

主要观察指标:平均 MII 卵子数、2PN 数和可用胚胎数。

结果:使用线性回归结合卵泡计数和雌二醇水平,开发了一组可解释的机器学习模型。使用该模型对触发日或继续刺激进行逐天预测时,分别在 48.7%和 13.8%的周期中确定了早期和晚期触发的可能性。经过倾向评分匹配后,与按时触发的匹配患者相比,早期触发的患者平均有 2.3 个 MII 卵子较少、1.8 个受精卵较少和 1.0 个可用胚胎较少,而晚期触发的患者平均有 2.7 个 MII 卵子较少、2.0 个受精卵较少和 0.7 个可用胚胎较少。

结论:本研究表明,开发一种可优化触发日的可解释机器学习模型是可行的。使用我们的模型有可能改善许多体外受精患者的结局。

相似文献

[1]
An interpretable machine learning model for predicting the optimal day of trigger during ovarian stimulation.

Fertil Steril. 2022-7

[2]
A machine learning algorithm can optimize the day of trigger to improve in vitro fertilization outcomes.

Fertil Steril. 2021-11

[3]
An interpretable machine learning model for individualized gonadotrophin starting dose selection during ovarian stimulation.

Reprod Biomed Online. 2022-12

[4]
Optimizing trigger timing in minimal ovarian stimulation for In Vitro fertilization using machine learning models with random search hyperparameter tuning.

Comput Biol Med. 2024-9

[5]
An artificial intelligence-based approach for selecting the optimal day for triggering in antagonist protocol cycles.

Reprod Biomed Online. 2024-1

[6]
Lag time from ovulation trigger to oocyte aspiration and oocyte maturity in assisted reproductive technology cycles: a retrospective study.

Fertil Steril. 2014-8

[7]
Gonadotropin-releasing hormone agonist trigger increases the number of oocytes and embryos available for cryopreservation in cancer patients undergoing ovarian stimulation for fertility preservation.

Fertil Steril. 2017-9

[8]
Luteal phase anovulatory follicles result in the production of competent oocytes: intra-patient paired case-control study comparing follicular versus luteal phase stimulations in the same ovarian cycle.

Hum Reprod. 2018-8-1

[9]
The use of GnRH-agonist trigger for the final maturation of oocytes in normal and low responders undergoing planned oocyte cryopreservation.

Hum Reprod. 2020-5-1

[10]
No effect of ovarian stimulation and oocyte yield on euploidy and live birth rates: an analysis of 12 298 trophectoderm biopsies.

Hum Reprod. 2020-5-1

引用本文的文献

[1]
A valuable predictive model for optimizing the timing of oocyte retrieval: a retrospective analysis of oocyte retrieval time in 49,961 oocyte pickup (OPU) cycles.

Reprod Biol Endocrinol. 2025-7-23

[2]
To dose or to let artificial intelligence dose: that is the question!

F S Rep. 2025-4-25

[3]
Real-world use of an artificial intelligence-powered clinical decision support tool for ovarian stimulation.

F S Rep. 2025-1-28

[4]
Deep learning-based prediction of individualized Real-time FSH doses in GnRH agonist long protocols.

J Transl Med. 2025-5-15

[5]
The influence of the pharmaceutical industry on the development of gonadotrophins and ovarian stimulation protocols in assisted reproductive technologies.

Front Endocrinol (Lausanne). 2025-4-4

[6]
Artificial Intelligence, Clinical Decision Support Algorithms, Mathematical Models, Calculators Applications in Infertility: Systematic Review and Hands-On Digital Applications.

Mayo Clin Proc Digit Health. 2024-8-26

[7]
Artificial Intelligence in Assisted Reproductive Technology: A New Era in Fertility Treatment.

Cureus. 2025-4-1

[8]
Pharmacogenetic analysis using artificial intelligence (AI) to identify polymorphisms associated with sub-optimal ovarian response and hyper-response.

J Assist Reprod Genet. 2025-4-2

[9]
Artificial Intelligence and Machine Learning: An Updated Systematic Review of Their Role in Obstetrics and Midwifery.

Cureus. 2025-3-11

[10]
A deep learning approach to understanding controlled ovarian stimulation and in vitro fertilization dynamics.

Sci Rep. 2025-3-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索