MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK.
Institute of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zürich, Switzerland.
Nat Commun. 2022 May 19;13(1):2758. doi: 10.1038/s41467-022-30506-1.
Mitochondrial complex I is a central metabolic enzyme that uses the reducing potential of NADH to reduce ubiquinone-10 (Q) and drive four protons across the inner mitochondrial membrane, powering oxidative phosphorylation. Although many complex I structures are now available, the mechanisms of Q reduction and energy transduction remain controversial. Here, we reconstitute mammalian complex I into phospholipid nanodiscs with exogenous Q. Using cryo-EM, we reveal a Q molecule occupying the full length of the Q-binding site in the 'active' (ready-to-go) resting state together with a matching substrate-free structure, and apply molecular dynamics simulations to propose how the charge states of key residues influence the Q binding pose. By comparing ligand-bound and ligand-free forms of the 'deactive' resting state (that require reactivating to catalyse), we begin to define how substrate binding restructures the deactive Q-binding site, providing insights into its physiological and mechanistic relevance.
线粒体复合物 I 是一种重要的代谢酶,它利用 NADH 的还原势能还原泛醌-10(Q)并驱动四个质子穿过线粒体内膜,从而为氧化磷酸化提供动力。尽管现在已经有许多复合物 I 的结构可供参考,但 Q 的还原和能量传递机制仍然存在争议。在这里,我们将哺乳动物复合物 I 与外源性 Q 重新组装到磷脂纳米盘中。通过 cryo-EM,我们揭示了一个 Q 分子占据了“活性”(准备就绪)静息状态下 Q 结合位的全长,同时还有一个与之匹配的无底物结构,并且应用分子动力学模拟来提出关键残基的电荷状态如何影响 Q 的结合构象。通过比较配体结合和配体自由形式的“失活”静息状态(需要重新激活以催化),我们开始定义底物结合如何重构失活的 Q 结合位,为其生理和机制相关性提供了见解。