Bartmiński Piotr, Siedliska Anna, Siłuch Marcin
Department of Geology, Soil Science and Geoinformation, Institute of Earth and Environmental Sciences, Maria Curie-Skłodowska University, al. Kraśnicka 2cd, 20-718 Lublin, Poland.
Institute of Agrophysics Polish Academy of Sciences, ul. Doświadczalna 4, 20-290 Lublin, Poland.
Sensors (Basel). 2024 Jun 2;24(11):3591. doi: 10.3390/s24113591.
This study explores the feasibility of analyzing soil organic carbon (SOC) in carbonate-rich soils using visible near-infrared spectroscopy (VIS-NIR). Employing a combination of datasets, feature groups, variable selection methods, and regression models, 22 modeling pipelines were developed. Spectral data and spectral data combined with carbonate contents were used as datasets, while raw reflectance, first-derivative (FD) reflectance, and second-derivative (SD) reflectance constituted the feature groups. The variable selection methods included Spearman correlation, Variable Importance in Projection (VIP), and Random Frog (Rfrog), while Partial Least Squares Regression (PLSR), Random Forest Regression (RFR), and Support Vector Regression (SVR) were the regression models. The obtained results indicated that the FD preprocessing method combined with RF, results in the model that is sufficiently robust and stable to be applied to soils rich in calcium carbonate.
本研究探讨了使用可见近红外光谱(VIS-NIR)分析富碳酸盐土壤中土壤有机碳(SOC)的可行性。通过结合数据集、特征组、变量选择方法和回归模型,开发了22种建模管道。光谱数据以及与碳酸盐含量相结合的光谱数据被用作数据集,而原始反射率、一阶导数(FD)反射率和二阶导数(SD)反射率构成了特征组。变量选择方法包括斯皮尔曼相关性、投影变量重要性(VIP)和随机蛙跳法(Rfrog),而偏最小二乘回归(PLSR)、随机森林回归(RFR)和支持向量回归(SVR)则为回归模型。所得结果表明,FD预处理方法与随机森林(RF)相结合,得到的模型足够稳健和稳定,可应用于富含碳酸钙的土壤。