Caballero Nirvana, Giamarchi Thierry, Lecomte Vivien, Agoritsas Elisabeth
Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland.
Université Grenoble Alpes, CNRS, LIPhy, FR-38000 Grenoble, France.
Phys Rev E. 2022 Apr;105(4-1):044138. doi: 10.1103/PhysRevE.105.044138.
Elastic interfaces display scale-invariant geometrical fluctuations at sufficiently large lengthscales. Their asymptotic static roughness then follows a power-law behavior, whose associated exponent provides a robust signature of the universality class to which they belong. The associated prefactor has instead a nonuniversal amplitude fixed by the microscopic interplay between thermal fluctuations and disorder, usually hidden below experimental resolution. Here we compute numerically the roughness of a one-dimensional elastic interface subject to both thermal fluctuations and a quenched disorder with a finite correlation length. We evidence the existence of a power-law regime at short lengthscales. We determine the corresponding exponent ζ_{dis} and find compelling numerical evidence that, contrarily to available analytic predictions, one has ζ_{dis}<1. We discuss the consequences on the temperature dependence of the roughness and the connection with the asymptotic random-manifold regime at large lengthscales. We also discuss the implications of our findings for other systems such as the Kardar-Parisi-Zhang equation and the Burgers turbulence.
弹性界面在足够大的长度尺度上表现出尺度不变的几何涨落。其渐近静态粗糙度遵循幂律行为,其相关指数提供了它们所属普适类的一个稳健特征。相反,相关的前置因子具有由热涨落和无序之间的微观相互作用所确定的非普适幅度,通常隐藏在实验分辨率之下。在这里,我们通过数值计算一维弹性界面在热涨落和具有有限关联长度的淬火无序作用下的粗糙度。我们证明了在短长度尺度上存在幂律 regime。我们确定了相应的指数ζ_{dis},并发现了令人信服的数值证据,与现有的解析预测相反,ζ_{dis}<1。我们讨论了粗糙度对温度依赖性的影响以及与大长度尺度上渐近随机流形 regime 的联系。我们还讨论了我们的发现对其他系统的影响,如 Kardar-Parisi-Zhang 方程和 Burgers 湍流。