Department of Physics, College of Science, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China.
Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
Nat Commun. 2016 Jul 25;7:12215. doi: 10.1038/ncomms12215.
Active fluids and growing interfaces are two well-studied but very different non-equilibrium systems. Each exhibits non-equilibrium behaviour distinct from that of their equilibrium counterparts. Here we demonstrate a surprising connection between these two: the ordered phase of incompressible polar active fluids in two spatial dimensions without momentum conservation, and growing one-dimensional interfaces (that is, the 1+1-dimensional Kardar-Parisi-Zhang equation), in fact belong to the same universality class. This universality class also includes two equilibrium systems: two-dimensional smectic liquid crystals, and a peculiar kind of constrained two-dimensional ferromagnet. We use these connections to show that two-dimensional incompressible flocks are robust against fluctuations, and exhibit universal long-ranged, anisotropic spatio-temporal correlations of those fluctuations. We also thereby determine the exact values of the anisotropy exponent ζ and the roughness exponents χx,y that characterize these correlations.
活性流体和生长界面是两个研究得很好但非常不同的非平衡系统。它们都表现出与平衡对应物不同的非平衡行为。在这里,我们展示了这两者之间的一个惊人的联系:在没有动量守恒的情况下,二维不可压缩极性活性流体的有序相和一维生长界面(即 1+1 维 Kardar-Parisi-Zhang 方程)实际上属于相同的普适类。这个普适类还包括两个平衡系统:二维向列液晶和一种特殊的二维受限铁磁体。我们利用这些联系表明,二维不可压缩 flock 对涨落具有鲁棒性,并表现出这些涨落的通用的长程、各向异性时空相关性。我们还因此确定了描述这些相关性的各向异性指数 ζ 和粗糙度指数 χx,y 的精确值。