Suppr超能文献

基于击键动力学的生物识别。

Biometric Identification Based on Keystroke Dynamics.

机构信息

Departament of Applied Informatics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland.

出版信息

Sensors (Basel). 2022 Apr 20;22(9):3158. doi: 10.3390/s22093158.

Abstract

The purpose of the paper is to study how changes in neural network architecture and its hyperparameters affect the results of biometric identification based on keystroke dynamics. The publicly available dataset of keystrokes was used, and the models with different parameters were trained using this data. Various neural network layers-convolutional, recurrent, and dense-in different configurations were employed together with pooling and dropout layers. The results were compared with the state-of-the-art model using the same dataset. The results varied, with the best-achieved accuracy equal to 82% for the identification (1 of 20) task.

摘要

本文旨在研究神经网络架构及其超参数的变化如何影响基于击键动力学的生物识别结果。使用了公开可用的击键数据集,并使用该数据训练了具有不同参数的模型。同时使用了各种具有不同配置的神经网络层——卷积层、循环层和密集层——以及池化层和辍学层。将结果与使用相同数据集的最先进模型进行了比较。结果有所不同,在识别(20 个中的 1 个)任务中,最佳准确率达到 82%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2849/9105156/7efc530a9610/sensors-22-03158-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验