Departament of Applied Informatics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland.
Sensors (Basel). 2022 Apr 20;22(9):3158. doi: 10.3390/s22093158.
The purpose of the paper is to study how changes in neural network architecture and its hyperparameters affect the results of biometric identification based on keystroke dynamics. The publicly available dataset of keystrokes was used, and the models with different parameters were trained using this data. Various neural network layers-convolutional, recurrent, and dense-in different configurations were employed together with pooling and dropout layers. The results were compared with the state-of-the-art model using the same dataset. The results varied, with the best-achieved accuracy equal to 82% for the identification (1 of 20) task.
本文旨在研究神经网络架构及其超参数的变化如何影响基于击键动力学的生物识别结果。使用了公开可用的击键数据集,并使用该数据训练了具有不同参数的模型。同时使用了各种具有不同配置的神经网络层——卷积层、循环层和密集层——以及池化层和辍学层。将结果与使用相同数据集的最先进模型进行了比较。结果有所不同,在识别(20 个中的 1 个)任务中,最佳准确率达到 82%。