College of Computer Science and Technology, China University of Petroleum (East China), Qingdao 266555, China.
Sensors (Basel). 2022 Apr 23;22(9):3253. doi: 10.3390/s22093253.
Domain adaptation methods are proposed to improve the performance of object detection in new domains without additional annotation costs. Recently, domain adaptation methods based on adversarial learning to align source and target domain image distributions are effective. However, for object detection tasks, image-level alignment enforces the alignment of non-transferable background regions, which affects the performance of important target regions. Therefore, how to balance the alignment of background and target remains a challenge. In addition, the current research with good effect is based on two-stage detectors, and there are relatively few studies on single-stage detectors. To address these issues, in this paper, we propose a selective domain adaptation framework for the spatial alignment of a single-stage detector. The framework can identify the background and target and pay different attention to them. On the premise that the single-stage detector does not generate region suggestions, it can achieve domain feature alignment and reduce the influence of the background, enabling transfer between different domains. We validate the effectiveness of our method for weather discrepancy, camera angles, synthetic to real-world, and real images to artistic images. Extensive experiments on four representative adaptation tasks show that the method effectively improves the performance of single-stage object detectors in different domains while maintaining good scalability.
领域自适应方法被提出以提高在新领域中无需额外注释成本的目标检测性能。最近,基于对抗学习来对齐源域和目标域图像分布的领域自适应方法是有效的。然而,对于目标检测任务,图像级别的对齐强制了不可迁移的背景区域的对齐,这影响了重要目标区域的性能。因此,如何平衡背景和目标的对齐仍然是一个挑战。此外,目前效果较好的研究是基于两阶段检测器的,而对单阶段检测器的研究相对较少。为了解决这些问题,在本文中,我们提出了一种用于单阶段检测器的空间对齐的选择性领域自适应框架。该框架可以识别背景和目标,并对它们给予不同的关注。在单阶段检测器不生成区域建议的前提下,它可以实现域特征对齐并减少背景的影响,从而实现不同域之间的迁移。我们验证了我们的方法在天气差异、相机角度、合成到真实世界以及真实图像到艺术图像等四个代表性适应任务中的有效性。在四个代表性的适应任务上进行的广泛实验表明,该方法在保持良好可扩展性的同时,有效地提高了不同领域中单阶段目标检测器的性能。