IEEE Trans Neural Netw Learn Syst. 2022 Feb;33(2):473-493. doi: 10.1109/TNNLS.2020.3028503. Epub 2022 Feb 3.
Large-scale labeled training datasets have enabled deep neural networks to excel across a wide range of benchmark vision tasks. However, in many applications, it is prohibitively expensive and time-consuming to obtain large quantities of labeled data. To cope with limited labeled training data, many have attempted to directly apply models trained on a large-scale labeled source domain to another sparsely labeled or unlabeled target domain. Unfortunately, direct transfer across domains often performs poorly due to the presence of domain shift or dataset bias. Domain adaptation (DA) is a machine learning paradigm that aims to learn a model from a source domain that can perform well on a different (but related) target domain. In this article, we review the latest single-source deep unsupervised DA methods focused on visual tasks and discuss new perspectives for future research. We begin with the definitions of different DA strategies and the descriptions of existing benchmark datasets. We then summarize and compare different categories of single-source unsupervised DA methods, including discrepancy-based methods, adversarial discriminative methods, adversarial generative methods, and self-supervision-based methods. Finally, we discuss future research directions with challenges and possible solutions.
大规模标记训练数据集使深度神经网络能够在广泛的基准视觉任务中表现出色。然而,在许多应用中,获取大量标记数据既昂贵又耗时。为了应对有限的标记训练数据,许多人试图直接将在大规模标记源域上训练的模型应用于稀疏标记或未标记的目标域。不幸的是,由于存在域转移或数据集偏差,直接跨域传输的效果往往不佳。域自适应 (DA) 是一种机器学习范例,旨在从源域中学习一个模型,该模型可以在不同(但相关)的目标域上表现良好。在本文中,我们回顾了最新的单源深度无监督 DA 方法,重点是视觉任务,并讨论了未来研究的新视角。我们首先介绍了不同的 DA 策略的定义和现有的基准数据集的描述。然后,我们总结和比较了不同类别的单源无监督 DA 方法,包括基于差异的方法、对抗判别方法、对抗生成方法和基于自我监督的方法。最后,我们讨论了未来的研究方向,包括挑战和可能的解决方案。