Suppr超能文献

通过定位回归对齐实现无监督域自适应目标检测

Unsupervised Domain-Adaptive Object Detection via Localization Regression Alignment.

作者信息

Piao Zhengquan, Tang Linbo, Zhao Baojun

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Nov;35(11):15170-15181. doi: 10.1109/TNNLS.2023.3282958. Epub 2024 Oct 29.

Abstract

Unsupervised domain-adaptive object detection uses labeled source domain data and unlabeled target domain data to alleviate the domain shift and reduce the dependence on the target domain data labels. For object detection, the features responsible for classification and localization are different. However, the existing methods basically only consider classification alignment, which is not conducive to cross-domain localization. To address this issue, in this article, we focus on the alignment of localization regression in domain-adaptive object detection and propose a novel localization regression alignment (LRA) method. The idea is that the domain-adaptive localization regression problem can be transformed into a general domain-adaptive classification problem first, and then adversarial learning is applied to the converted classification problem. Specifically, LRA first discretizes the continuous regression space, and the discrete regression intervals are treated as bins. Then, a novel binwise alignment (BA) strategy is proposed through adversarial learning. BA can further contribute to the overall cross-domain feature alignment for object detection. Extensive experiments are conducted on different detectors in various scenarios, and the state-of-the-art performance is achieved; these results demonstrate the effectiveness of our method. The code will be available at: https://github.com/zqpiao/LRA.

摘要

无监督域自适应目标检测使用有标签的源域数据和无标签的目标域数据来缓解域偏移,并减少对目标域数据标签的依赖。对于目标检测而言,负责分类和定位的特征是不同的。然而,现有方法基本上只考虑分类对齐,这不利于跨域定位。为了解决这个问题,在本文中,我们聚焦于域自适应目标检测中的定位回归对齐,并提出了一种新颖的定位回归对齐(LRA)方法。其思路是,首先将域自适应定位回归问题转化为一个通用的域自适应分类问题,然后将对抗学习应用于转换后的分类问题。具体来说,LRA首先将连续回归空间离散化,将离散的回归区间视为箱。然后,通过对抗学习提出了一种新颖的逐箱对齐(BA)策略。BA可以进一步促进目标检测的整体跨域特征对齐。我们在各种场景下对不同的检测器进行了大量实验,并取得了领先的性能;这些结果证明了我们方法的有效性。代码将发布在:https://github.com/zqpiao/LRA

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验