Suppr超能文献

基于多普勒雷达特征和深度学习的行人和动物识别。

Pedestrian and Animal Recognition Using Doppler Radar Signature and Deep Learning.

机构信息

Department of Applied Informatics, Vytautas Magnus University, 44404 Kaunas, Lithuania.

JVC Sonderus, 05200 Vilnius, Lithuania.

出版信息

Sensors (Basel). 2022 May 1;22(9):3456. doi: 10.3390/s22093456.

Abstract

Pedestrian occurrences in images and videos must be accurately recognized in a number of applications that may improve the quality of human life. Radar can be used to identify pedestrians. When distinct portions of an object move in front of a radar, micro-Doppler signals are produced that may be utilized to identify the object. Using a deep-learning network and time-frequency analysis, we offer a method for classifying pedestrians and animals based on their micro-Doppler radar signature features. Based on these signatures, we employed a convolutional neural network (CNN) to recognize pedestrians and animals. The proposed approach was evaluated on the MAFAT Radar Challenge dataset. Encouraging results were obtained, with an AUC (Area Under Curve) value of 0.95 on the public test set and over 0.85 on the final (private) test set. The proposed DNN architecture, in contrast to more common shallow CNN architectures, is one of the first attempts to use such an approach in the domain of radar data. The use of the synthetic radar data, which greatly improved the final result, is the other novel aspect of our work.

摘要

在许多可能提高人类生活质量的应用中,必须准确识别图像和视频中的行人。雷达可用于识别行人。当物体的不同部分在雷达前移动时,会产生微多普勒信号,可用于识别物体。我们使用深度学习网络和时频分析,提供了一种基于微多普勒雷达特征的行人及动物分类方法。基于这些特征,我们使用卷积神经网络(CNN)识别行人及动物。在 MAFAT 雷达挑战赛数据集上评估了所提出的方法。在公共测试集上获得了令人鼓舞的结果,AUC(曲线下面积)值为 0.95,在最终(私有)测试集上超过 0.85。与更常见的浅层 CNN 架构相比,所提出的 DNN 架构是首次尝试在雷达数据领域使用这种方法之一。使用合成雷达数据极大地提高了最终结果,这是我们工作的另一个新颖方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b683/9105660/dc879e7a0fd6/sensors-22-03456-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验