Suppr超能文献

基于深度学习传感器数据融合的无刷直流电机建模与故障检测。

Modeling and Fault Detection of Brushless Direct Current Motor by Deep Learning Sensor Data Fusion.

机构信息

Department of Computer Engineering, Brandenburg University of Technology Cottbus-Senftenberg, 03046 Cottbus, Germany.

Fraunhofer Institute for Photonic Microsystems, 01109 Dresden, Germany.

出版信息

Sensors (Basel). 2022 May 5;22(9):3516. doi: 10.3390/s22093516.

Abstract

Only with new sensor concepts in a network, which go far beyond what the current state-of-the-art can offer, can current and future requirements for flexibility, safety, and security be met. The combination of data from many sensors allows a richer representation of the observed phenomenon, e.g., system degradation, which can facilitate analysis and decision-making processes. This work addresses the topic of predictive maintenance by exploiting sensor data fusion and artificial intelligence-based analysis. With a dataset such as vibration and sound from sensors, we focus on studying paradigms that orchestrate the most optimal combination of sensors with deep learning sensor fusion algorithms to enable predictive maintenance. In our experimental setup, we used raw data obtained from two sensors, a microphone, and an accelerometer installed on a brushless direct current (BLDC) motor. The data from each sensor were processed individually and, in a second step, merged to create a solid base for analysis. To diagnose BLDC motor faults, this work proposes to use data-level sensor fusion with deep learning methods such as deep convolutional neural networks (DCNNs) for their ability to automatically extract relevant information from the input data, the long short-term memory method (LSTM), and convolutional long short-term memory (CNN-LSTM), a combination of the two previous methods. The results show that in our setup, sound signals outperform vibrations when used individually for training. However, without any feature selection/extraction step, the accuracy of the models improves with data fusion and reaches 98.8%, 93.5%, and 73.6% for the DCNN, CNN-LSTM, and LSTM methods, respectively, 98.8% being a performance that, according to our reading, has never been reached in the analysis of the faults of a BLDC motor without first going through the extraction of the characteristics and their fusion by traditional methods. These results show that it is possible to work with raw data from multiple sensors and achieve good results using deep learning methods without spending time and resources on selecting appropriate features to extract and methods to use for feature extraction and data fusion.

摘要

只有通过新型传感器网络中的概念,才能超越当前的最新技术水平,满足当前和未来对灵活性、安全性和保障性的需求。来自多个传感器的数据的组合可以更丰富地表示所观察到的现象,例如系统退化,这可以促进分析和决策过程。这项工作通过利用传感器数据融合和基于人工智能的分析来解决预测性维护的主题。我们使用来自传感器的振动和声音等数据集,重点研究使用深度学习传感器融合算法来协调最佳传感器组合的范例,以实现预测性维护。在我们的实验设置中,我们使用了从两个传感器(安装在无刷直流 (BLDC) 电机上的麦克风和加速度计)获得的原始数据。对每个传感器的数据分别进行处理,然后在第二步中将其合并,为分析创建一个坚实的基础。为了诊断 BLDC 电机故障,这项工作提出使用数据级传感器融合与深度学习方法,例如深度卷积神经网络 (DCNN),因为它们能够自动从输入数据中提取相关信息,长短期记忆方法 (LSTM) 和卷积长短期记忆 (CNN-LSTM),这两种方法的结合。结果表明,在我们的设置中,单独使用声音信号进行训练时,其性能优于振动信号。然而,在没有任何特征选择/提取步骤的情况下,通过数据融合,模型的准确性得到提高,DCNN、CNN-LSTM 和 LSTM 方法的准确率分别达到 98.8%、93.5%和 73.6%,98.8%是根据我们的阅读,在不首先通过传统方法提取特征并融合特征的情况下,从未在 BLDC 电机故障分析中达到过的性能。这些结果表明,无需花费时间和资源选择适当的特征提取方法和用于特征提取和数据融合的方法,就可以使用来自多个传感器的原始数据并使用深度学习方法获得良好的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0319/9099980/301ea9c2ea15/sensors-22-03516-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验