Suppr超能文献

一种用于基于视觉的人体活动识别的新型中央相机标定方法,记录点对点失真。

A Novel Central Camera Calibration Method Recording Point-to-Point Distortion for Vision-Based Human Activity Recognition.

机构信息

Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China.

College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China.

出版信息

Sensors (Basel). 2022 May 5;22(9):3524. doi: 10.3390/s22093524.

Abstract

The camera is the main sensor of vison-based human activity recognition, and its high-precision calibration of distortion is an important prerequisite of the task. Current studies have shown that multi-parameter model methods achieve higher accuracy than traditional methods in the process of camera calibration. However, these methods need hundreds or even thousands of images to optimize the camera model, which limits their practical use. Here, we propose a novel point-to-point camera distortion calibration method that requires only dozens of images to get a dense distortion rectification map. We have designed an objective function based on deformation between the original images and the projection of reference images, which can eliminate the effect of distortion when optimizing camera parameters. Dense features between the original images and the projection of the reference images are calculated by digital image correlation (DIC). Experiments indicate that our method obtains a comparable result with the multi-parameter model method using a large number of pictures, and contributes a 28.5% improvement to the reprojection error over the polynomial distortion model.

摘要

相机是基于视觉的人类活动识别的主要传感器,其对失真的高精度校准是任务的重要前提。目前的研究表明,在相机校准过程中,多参数模型方法比传统方法具有更高的精度。然而,这些方法需要数百甚至数千张图像来优化相机模型,这限制了它们的实际应用。在这里,我们提出了一种新的点到点相机失真校准方法,该方法只需要几十张图像即可获得密集的失真校正图。我们设计了一个基于原始图像和参考图像投影之间变形的目标函数,该函数可以在优化相机参数时消除失真的影响。通过数字图像相关(DIC)计算原始图像和参考图像投影之间的密集特征。实验表明,我们的方法在使用大量图片时与多参数模型方法得到了可比的结果,并且在重投影误差方面比多项式失真模型提高了 28.5%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21cd/9105339/c9c6dedbb852/sensors-22-03524-g001.jpg

相似文献

2
High Precision Calibration Algorithm for Binocular Stereo Vision Camera using Deep Reinforcement Learning.
Comput Intell Neurosci. 2022 Mar 31;2022:6596868. doi: 10.1155/2022/6596868. eCollection 2022.
3
Camera calibration optimization algorithm that uses a step function.
Opt Express. 2024 May 20;32(11):18453-18471. doi: 10.1364/OE.516126.
4
High-precision method of binocular camera calibration with a distortion model.
Appl Opt. 2017 Mar 10;56(8):2368-2377. doi: 10.1364/AO.56.002368.
5
Two-point calibration method for a zoom camera with an approximate focal-invariant radial distortion model.
J Opt Soc Am A Opt Image Sci Vis. 2021 Apr 1;38(4):504-514. doi: 10.1364/JOSAA.414504.
6
A Distortion Correction Method Based on Actual Camera Imaging Principles.
Sensors (Basel). 2024 Apr 9;24(8):2406. doi: 10.3390/s24082406.
7
Global Calibration of Multi-Cameras Based on Refractive Projection and Ray Tracing.
Sensors (Basel). 2017 Oct 31;17(11):2494. doi: 10.3390/s17112494.
10
Hand-eye and radial distortion calibration for rigid endoscopes.
Int J Med Robot. 2013 Dec;9(4):441-54. doi: 10.1002/rcs.1478. Epub 2013 Jan 10.

引用本文的文献

1
A Distortion Correction Method Based on Actual Camera Imaging Principles.
Sensors (Basel). 2024 Apr 9;24(8):2406. doi: 10.3390/s24082406.
2
Noniterative Generalized Camera Model for Near-Central Camera System.
Sensors (Basel). 2023 Jun 2;23(11):5294. doi: 10.3390/s23115294.

本文引用的文献

1
High-accuracy calibration of cameras without depth of field and target size limitations.
Opt Express. 2020 Sep 14;28(19):27443-27458. doi: 10.1364/OE.402826.
2
Flexible and accurate camera calibration using grid spherical images.
Opt Express. 2017 Jun 26;25(13):15269-15285. doi: 10.1364/OE.25.015269.
3
A Unifying Model for Camera Calibration.
IEEE Trans Pattern Anal Mach Intell. 2017 Jul;39(7):1309-1319. doi: 10.1109/TPAMI.2016.2592904. Epub 2016 Jul 19.
4
Method for out-of-focus camera calibration.
Appl Opt. 2016 Mar 20;55(9):2346-52. doi: 10.1364/AO.55.002346.
6
Large deformation measurement using digital image correlation: a fully automated approach.
Appl Opt. 2012 Nov 1;51(31):7674-83. doi: 10.1364/AO.51.007674.
7
Equivalence of digital image correlation criteria for pattern matching.
Appl Opt. 2010 Oct 1;49(28):5501-9. doi: 10.1364/AO.49.005501.
8
Parameter-free radial distortion correction with center of distortion estimation.
IEEE Trans Pattern Anal Mach Intell. 2007 Aug;29(8):1309-21. doi: 10.1109/TPAMI.2007.1147.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验