Suppr超能文献

非迭代广义相机模型用于近心相机系统。

Noniterative Generalized Camera Model for Near-Central Camera System.

机构信息

School of Electrical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.

出版信息

Sensors (Basel). 2023 Jun 2;23(11):5294. doi: 10.3390/s23115294.

Abstract

This paper proposes a near-central camera model and its solution approach. 'Near-central' refers to cases in which the rays do not converge to a point and do not have severely arbitrary directions (non-central cases). Conventional calibration methods are difficult to apply in such cases. Although the generalized camera model can be applied, dense observation points are required for accurate calibration. Moreover, this approach is computationally expensive in the iterative projection framework. We developed a noniterative ray correction method based on sparse observation points to address this problem. First, we established a smoothed three-dimensional (3D) residual framework using a backbone to avoid using the iterative framework. Second, we interpolated the residual by applying local inverse distance weighting on the nearest neighbor of a given point. Specifically, we prevented excessive computation and the deterioration in accuracy that may occur in inverse projection through the 3D smoothed residual vectors. Moreover, the 3D vectors can represent the ray directions more accurately than the 2D entities. Synthetic experiments show that the proposed method can achieve prompt and accurate calibration. The depth error is reduced by approximately 63% in the bumpy shield dataset, and the proposed approach is noted to be two digits faster than the iterative methods.

摘要

本文提出了一种近心相机模型及其求解方法。“近心”是指光线不汇聚于一点且方向没有严重任意性(非中心情况)的情况。传统的标定方法在这种情况下难以应用。虽然可以应用广义相机模型,但需要密集的观测点才能进行精确标定。此外,这种方法在迭代投影框架中计算量很大。为了解决这个问题,我们开发了一种基于稀疏观测点的非迭代光线校正方法。首先,我们使用骨干建立了一个平滑的三维(3D)残差框架,以避免使用迭代框架。其次,我们通过对给定点的最近邻应用局部倒数距离加权来对残差进行插值。具体来说,我们通过 3D 平滑残差向量防止了反向投影中可能出现的过度计算和精度恶化。此外,3D 向量可以比 2D 实体更准确地表示光线方向。合成实验表明,所提出的方法可以实现快速准确的标定。在凹凸屏蔽数据集上,深度误差减少了约 63%,而且与迭代方法相比,该方法的速度快两个数量级。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bae/10256103/256d15704ae8/sensors-23-05294-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验