Suppr超能文献

基于李雅普诺夫优化的雾计算资源调度与能耗优化

Resource Scheduling and Energy Consumption Optimization Based on Lyapunov Optimization in Fog Computing.

作者信息

Huang Chenbin, Wang Hui, Zeng Lingguo, Li Ting

机构信息

School of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321000, China.

出版信息

Sensors (Basel). 2022 May 6;22(9):3527. doi: 10.3390/s22093527.

Abstract

Delay-sensitive tasks account for an increasing proportion of all tasks on the Internet of Things (IoT). How to solve such problems has become a hot research topic. Delay-sensitive tasks scenarios include intelligent vehicles, unmanned aerial vehicles, industrial IoT, intelligent transportation, etc. More and more scenarios have delay requirements for tasks and simply reducing the delay of tasks is not enough. However, speeding up the processing speed of a task means increasing energy consumption, so we try to find a way to complete tasks on time with the lowest energy consumption. Hence, we propose a heuristic particle swarm optimization (PSO) algorithm based on a Lyapunov framework (LPSO). Since task duration and queue stability are guaranteed, a balance is achieved between the computational energy consumption of the IoT nodes, the transmission energy consumption and the fog node computing energy consumption, so that tasks can be completed with minimum energy consumption. Compared with the original PSO algorithm and the greedy algorithm, the performance of our LPSO algorithm is significantly improved.

摘要

对延迟敏感的任务在物联网(IoT)所有任务中所占比例日益增加。如何解决此类问题已成为热门研究课题。对延迟敏感的任务场景包括智能车辆、无人机、工业物联网、智能交通等。越来越多的场景对任务有延迟要求,仅仅降低任务延迟是不够的。然而,加快任务处理速度意味着增加能耗,因此我们试图找到一种以最低能耗按时完成任务的方法。因此,我们提出了一种基于李雅普诺夫框架的启发式粒子群优化(PSO)算法(LPSO)。由于保证了任务持续时间和队列稳定性,在物联网节点的计算能耗、传输能耗和雾节点计算能耗之间实现了平衡,从而使任务能够以最低能耗完成。与原始PSO算法和贪心算法相比,我们的LPSO算法性能有显著提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/582d/9104024/b04388aef86b/sensors-22-03527-g001.jpg

相似文献

3
4
Online Workload Allocation via Fog-Fog-Cloud Cooperation to Reduce IoT Task Service Delay.
Sensors (Basel). 2019 Sep 4;19(18):3830. doi: 10.3390/s19183830.
5
Optimizing low-power task scheduling for multiple users and servers in mobile edge computing by the MUMS framework.
Heliyon. 2024 May 23;10(11):e31622. doi: 10.1016/j.heliyon.2024.e31622. eCollection 2024 Jun 15.
6
Efficient UAV-based mobile edge computing using differential evolution and ant colony optimization.
PeerJ Comput Sci. 2022 Feb 4;8:e870. doi: 10.7717/peerj-cs.870. eCollection 2022.
7
A Multi-Classifiers Based Algorithm for Energy Efficient Tasks Offloading in Fog Computing.
Sensors (Basel). 2023 Aug 16;23(16):7209. doi: 10.3390/s23167209.
8
Advancements in heuristic task scheduling for IoT applications in fog-cloud computing: challenges and prospects.
PeerJ Comput Sci. 2024 Jun 17;10:e2128. doi: 10.7717/peerj-cs.2128. eCollection 2024.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验