Suppr超能文献

多用户多任务移动边缘计算系统中混合能量采集的节能在线资源管理和分配优化。

Energy-Efficient Online Resource Management and Allocation Optimization in Multi-User Multi-Task Mobile-Edge Computing Systems with Hybrid Energy Harvesting.

机构信息

School of Software, Central South University, Changsha 410075, China.

"Mobile Health" Ministry of Education-China Mobile Joint Laboratory, Changsha 410075, China.

出版信息

Sensors (Basel). 2018 Sep 17;18(9):3140. doi: 10.3390/s18093140.

Abstract

Mobile Edge Computing (MEC) has evolved into a promising technology that can relieve computing pressure on wireless devices (WDs) in the Internet of Things (IoT) by offloading computation tasks to the MEC server. Resource management and allocation are challenging because of the unpredictability of task arrival, wireless channel status and energy consumption. To address such a challenge, in this paper, we provide an energy-efficient joint resource management and allocation (ECM-RMA) policy to reduce time-averaged energy consumption in a multi-user multi-task MEC system with hybrid energy harvested WDs. We first formulate the time-averaged energy consumption minimization problem while the MEC system satisfied both the data queue stability constraint and energy queue stability constraint. To solve the stochastic optimization problem, we turn the problem into two deterministic sub-problems, which can be easily solved by convex optimization technique and linear programming technique. Correspondingly, we propose the ECM-RMA algorithm that does not require priori knowledge of stochastic processes such as channel states, data arrivals and green energy harvesting. Most importantly, the proposed algorithm achieves the energy consumption-delay trade-off as [ O ( 1 / V ) , O ( V ) ] . , as a non-negative weight, which can effectively control the energy consumption-delay performance. Finally, simulation results verify the correctness of the theoretical analysis and the effectiveness of the proposed algorithm.

摘要

移动边缘计算 (MEC) 已发展成为一种有前途的技术,通过将计算任务卸载到 MEC 服务器,可以缓解物联网 (IoT) 中无线设备 (WD) 的计算压力。由于任务到达的不可预测性、无线信道状态和能耗,资源管理和分配具有挑战性。为了解决这一挑战,在本文中,我们提供了一种节能联合资源管理和分配 (ECM-RMA) 策略,以减少具有混合能量收集 WD 的多用户多任务 MEC 系统中的平均时间能耗。我们首先在 MEC 系统满足数据队列稳定性约束和能量队列稳定性约束的同时,制定了最小化平均时间能耗的问题。为了解决随机优化问题,我们将问题转化为两个确定性子问题,可以通过凸优化技术和线性规划技术轻松解决。相应地,我们提出了 ECM-RMA 算法,该算法不需要先验知识,例如信道状态、数据到达和绿色能源收集等随机过程。最重要的是,所提出的算法实现了能耗-延迟权衡作为 [O(1/V),O(V)]。作为一个非负权重,可以有效地控制能耗-延迟性能。最后,仿真结果验证了理论分析的正确性和所提出算法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验