Suppr超能文献

基于支持向量机的换道行为识别与横向轨迹预测。

Support Vector Machine Based Lane-Changing Behavior Recognition and Lateral Trajectory Prediction.

机构信息

College of Information Engineering, Fuyang Normal University, Fuyang 236041, China.

出版信息

Comput Intell Neurosci. 2022 May 10;2022:3632333. doi: 10.1155/2022/3632333. eCollection 2022.

Abstract

With the development of technology, vehicle trajectory prediction and safety decision technology has become an important part of active safety technology. Among them, the vehicle trajectory prediction technology can predict the vehicle position, speed, and other motion states in the predicted period according to the current and historical vehicle running state, and the prediction results can provide support for judging the vehicle safety in the predicted period. In order to analyze the above problems, this study fully extracted the main feature information from the vehicle lane change track data with the help of the powerful nonlinear learning and high pattern recognition ability of support vector machine, and conducted identification modeling for the actual lane change process of the vehicle and predictive analysis of the vehicle lateral movement track. First, the lane-changing behavior of vehicles was analyzed, and the vehicle lane-changing execution stage and 10 influencing factors that could characterize lane-changing behavior were determined based on NGSIM to extract the data of lane-change-related variables. Then, a lane-changing recognition model based on gridsearch-PSO is proposed. In the Matlab environment, the model has a test accuracy of 97.68%, while the SVM model without optimization parameters has a recognition accuracy of only 80.87%. The results show that the model has strong classification ability and robustness. Finally, by using the polynomial model for lateral movement trajectory fitting, K-fold cross-validation method is used for fitting polynomial model fitting test.

摘要

随着技术的发展,车辆轨迹预测和安全决策技术已经成为主动安全技术的重要组成部分。其中,车辆轨迹预测技术可以根据车辆当前和历史的运行状态,预测车辆在预测时间段内的位置、速度等运动状态,预测结果可以为判断车辆在预测时间段内的安全性提供支持。为了分析上述问题,本研究充分利用支持向量机强大的非线性学习和高模式识别能力,从车辆换道轨迹数据中提取主要特征信息,并对车辆实际换道过程进行识别建模和车辆横向运动轨迹的预测分析。首先,分析车辆的换道行为,根据 NGSIM 确定车辆换道执行阶段和 10 个能够表征换道行为的影响因素,提取与换道相关变量的数据。然后,提出了一种基于网格搜索-PSO 的换道识别模型。在 Matlab 环境下,模型的测试精度为 97.68%,而没有优化参数的 SVM 模型的识别精度仅为 80.87%。结果表明,该模型具有较强的分类能力和鲁棒性。最后,通过使用多项式模型进行横向运动轨迹拟合,采用 K 折交叉验证方法进行拟合多项式模型拟合测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b858/9113884/debaf5f0e767/CIN2022-3632333.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验