Suppr超能文献

癌症患者外周置入中心静脉导管非计划性拔管的风险因素和预测模型:前瞻性、机器学习研究。

Risk Factors and Predictive Models for Peripherally Inserted Central Catheter Unplanned Extubation in Patients With Cancer: Prospective, Machine Learning Study.

机构信息

Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, Hunan, China.

Xiangya School of Nursing, Central South University, Changsha, Hunan, China.

出版信息

J Med Internet Res. 2023 Nov 16;25:e49016. doi: 10.2196/49016.

Abstract

BACKGROUND

Cancer indeed represents a significant public health challenge, and unplanned extubation of peripherally inserted central catheter (PICC-UE) is a critical concern in patient safety. Identifying independent risk factors and implementing high-quality assessment tools for early detection in high-risk populations can play a crucial role in reducing the incidence of PICC-UE among patients with cancer. Precise prevention and treatment strategies are essential to improve patient outcomes and safety in clinical settings.

OBJECTIVE

This study aims to identify the independent risk factors associated with PICC-UE in patients with cancer and to construct a predictive model tailored to this group, offering a theoretical framework for anticipating and preventing PICC-UE in these patients.

METHODS

Prospective data were gathered from January to December 2022, encompassing patients with cancer with PICC at Xiangya Hospital, Central South University. Each patient underwent continuous monitoring until the catheter's removal. The patients were categorized into 2 groups: the UE group (n=3107) and the non-UE group (n=284). Independent risk factors were identified through univariate analysis, the least absolute shrinkage and selection operator (LASSO) algorithm, and multivariate analysis. Subsequently, the 3391 patients were classified into a train set and a test set in a 7:3 ratio. Utilizing the identified predictors, 3 predictive models were constructed using the logistic regression, support vector machine, and random forest algorithms. The ultimate model was selected based on the receiver operating characteristic (ROC) curve and TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) synthesis analysis. To further validate the model, we gathered prospective data from 600 patients with cancer at the Affiliated Hospital of Qinghai University and Hainan Provincial People's Hospital from June to December 2022. We assessed the model's performance using the area under the curve of the ROC to evaluate differentiation, the calibration curve for calibration capability, and decision curve analysis (DCA) to gauge the model's clinical applicability.

RESULTS

Independent risk factors for PICC-UE in patients with cancer were identified, including impaired physical mobility (odds ratio [OR] 2.775, 95% CI 1.951-3.946), diabetes (OR 1.754, 95% CI 1.134-2.712), surgical history (OR 1.734, 95% CI 1.313-2.290), elevated D-dimer concentration (OR 2.376, 95% CI 1.778-3.176), targeted therapy (OR 1.441, 95% CI 1.104-1.881), surgical treatment (OR 1.543, 95% CI 1.152-2.066), and more than 1 catheter puncture (OR 1.715, 95% CI 1.121-2.624). Protective factors were normal BMI (OR 0.449, 95% CI 0.342-0.590), polyurethane catheter material (OR 0.305, 95% CI 0.228-0.408), and valved catheter (OR 0.639, 95% CI 0.480-0.851). The TOPSIS synthesis analysis results showed that in the train set, the composite index (Ci) values were 0.00 for the logistic model, 0.82 for the support vector machine model, and 0.85 for the random forest model. In the test set, the Ci values were 0.00 for the logistic model, 1.00 for the support vector machine model, and 0.81 for the random forest model. The optimal model, constructed based on the support vector machine, was obtained and validated externally. The ROC curve, calibration curve, and DCA curve demonstrated that the model exhibited excellent accuracy, stability, generalizability, and clinical applicability.

CONCLUSIONS

In summary, this study identified 10 independent risk factors for PICC-UE in patients with cancer. The predictive model developed using the support vector machine algorithm demonstrated excellent clinical applicability and was validated externally, providing valuable support for the early prediction of PICC-UE in patients with cancer.

摘要

背景

癌症确实是一个重大的公共卫生挑战,外周静脉置入中心静脉导管(PICC)非计划性拔管是患者安全的一个关键关注点。确定独立的风险因素,并为高危人群实施高质量的评估工具,以便早期发现,这对于降低癌症患者 PICC 非计划性拔管的发生率至关重要。精确的预防和治疗策略对于改善临床环境中的患者预后和安全至关重要。

目的

本研究旨在确定癌症患者发生 PICC 非计划性拔管的独立风险因素,并为该人群构建预测模型,为预测和预防这些患者的 PICC 非计划性拔管提供理论框架。

方法

前瞻性收集 2022 年 1 月至 12 月期间在中南大学湘雅医院接受 PICC 的癌症患者的数据。每位患者在导管拔除前都进行持续监测。将患者分为两组:非计划性拔管组(UE 组,n=3107)和非非计划性拔管组(非 UE 组,n=284)。通过单因素分析、最小绝对收缩和选择算子(LASSO)算法和多因素分析确定独立风险因素。随后,将 3391 名患者按 7:3 的比例分为训练集和测试集。利用确定的预测因素,使用逻辑回归、支持向量机和随机森林算法构建了 3 个预测模型。最终模型是根据受试者工作特征(ROC)曲线和逼近理想解的技术合成分析(TOPSIS)选择的。为了进一步验证模型,我们从 2022 年 6 月至 12 月在青海大学附属医院和海南省人民医院前瞻性收集了 600 名癌症患者的数据。使用 ROC 曲线下面积评估模型的区分能力,校准曲线评估校准能力,决策曲线分析(DCA)评估模型的临床适用性。

结果

确定了癌症患者发生 PICC 非计划性拔管的独立风险因素,包括身体活动受限(优势比[OR]2.775,95%置信区间[CI]1.951-3.946)、糖尿病(OR 1.754,95%CI 1.134-2.712)、手术史(OR 1.734,95%CI 1.313-2.290)、D-二聚体浓度升高(OR 2.376,95%CI 1.778-3.176)、靶向治疗(OR 1.441,95%CI 1.104-1.881)、手术治疗(OR 1.543,95%CI 1.152-2.066)和导管穿刺次数超过 1 次(OR 1.715,95%CI 1.121-2.624)。保护因素包括正常 BMI(OR 0.449,95%CI 0.342-0.590)、聚氨酯导管材料(OR 0.305,95%CI 0.228-0.408)和带瓣膜的导管(OR 0.639,95%CI 0.480-0.851)。TOPSIS 综合分析结果显示,在训练集中,逻辑模型的综合指数(Ci)值为 0.00,支持向量机模型为 0.82,随机森林模型为 0.85。在测试集中,逻辑模型的 Ci 值为 0.00,支持向量机模型为 1.00,随机森林模型为 0.81。基于支持向量机构建的最优模型得到验证,并在外部进行了验证。ROC 曲线、校准曲线和 DCA 曲线表明,该模型具有优异的准确性、稳定性、可推广性和临床适用性。

结论

综上所述,本研究确定了癌症患者发生 PICC 非计划性拔管的 10 个独立风险因素。使用支持向量机算法构建的预测模型具有出色的临床适用性,并在外部得到验证,为癌症患者 PICC 非计划性拔管的早期预测提供了有价值的支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d42/10690529/fb169ae95076/jmir_v25i1e49016_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验