Suppr超能文献

主动式换道行为碰撞风险预测框架,纳入个体驾驶风格。

A proactive crash risk prediction framework for lane-changing behavior incorporating individual driving styles.

机构信息

Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, No.100, Pingleyuan, Chaoyang District, Beijing 100124, China.

Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China.

出版信息

Accid Anal Prev. 2023 Aug;188:107072. doi: 10.1016/j.aap.2023.107072. Epub 2023 May 1.

Abstract

Driving style may have an important effect on traffic safety. Proactive crash risk prediction for lane-changing behaviors incorporating individual driving styles can help drivers make safe lane-changing decisions. However, the interaction between driving styles and lane-changing risk is still not fully understood, making it difficult for advanced driver-assistance systems (ADASs) to provide personalized lane-changing risk information services. This paper proposes a personalized risk lane-changing prediction framework that considers driving style. Several driving volatility indices based on vehicle interactive features have been proposed, and a dynamic clustering method is developed to determine the best identification time window and methods of driving style. The Light Gradient Boosting Machine (LightGBM) based on Shapley additive explanation is used to predict lane-changing risk for cautious, normal, and aggressive drivers and to analyze their risk factors. The highD trajectory dataset is used to evaluate the proposed framework. The obtained results show that i) spectral clustering and a time window of 3 s can accurately identify driving styles during the lane-changing intention process; ii) the LightGBM algorithm outperforms other machine learning methods in personalized lane-changing risk prediction; iii) aggressive drivers seek more individual driving freedom than cautious and normal drivers and tend to ignore the state of the car behind them in the target lane, with a greater lane-changing risk. The research conclusion can provide basic support for the development and application of personalized lane-changing warning systems in ADASs.

摘要

驾驶风格可能对交通安全有重要影响。将个体驾驶风格纳入其中的主动型换道行为碰撞风险预测,有助于驾驶员做出安全的换道决策。然而,驾驶风格与换道风险之间的相互作用仍未被充分理解,这使得先进驾驶辅助系统(ADAS)难以提供个性化的换道风险信息服务。本文提出了一种考虑驾驶风格的个性化风险换道预测框架。提出了几种基于车辆交互特征的驾驶波动指数,并开发了一种动态聚类方法来确定最佳识别时间窗口和驾驶风格的方法。基于 Shapley 加法解释的 Light Gradient Boosting Machine(LightGBM)被用于预测谨慎、正常和激进驾驶员的换道风险,并分析他们的风险因素。使用 highD 轨迹数据集来评估所提出的框架。所得结果表明:i)谱聚类和 3s 的时间窗口可以在换道意图过程中准确识别驾驶风格;ii)LightGBM 算法在个性化换道风险预测方面优于其他机器学习方法;iii)激进型驾驶员比谨慎型和正常型驾驶员更追求个人驾驶自由度,并且往往忽视目标车道上后方车辆的状态,具有更大的换道风险。研究结论可为 ADAS 中个性化换道警告系统的开发和应用提供基本支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验