Suppr超能文献

分数阶可积非线性孤子方程

Fractional Integrable Nonlinear Soliton Equations.

作者信息

Ablowitz Mark J, Been Joel B, Carr Lincoln D

机构信息

Department of Applied Mathematics, University of Colorado, Boulder, Colorado 80309, USA.

Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, Colorado 80401, USA.

出版信息

Phys Rev Lett. 2022 May 6;128(18):184101. doi: 10.1103/PhysRevLett.128.184101.

Abstract

Nonlinear integrable equations serve as a foundation for nonlinear dynamics, and fractional equations are well known in anomalous diffusion. We connect these two fields by presenting the discovery of a new class of integrable fractional nonlinear evolution equations describing dispersive transport in fractional media. These equations can be constructed from nonlinear integrable equations using a widely generalizable mathematical process utilizing completeness relations, dispersion relations, and inverse scattering transform techniques. As examples, this general method is used to characterize fractional extensions to two physically relevant, pervasive integrable nonlinear equations: the Korteweg-deVries and nonlinear Schrödinger equations. These equations are shown to predict superdispersive transport of nondissipative solitons in fractional media.

摘要

非线性可积方程是非线性动力学的基础,而分数阶方程在反常扩散中广为人知。我们通过展示一类新的可积分数阶非线性演化方程的发现,将这两个领域联系起来,这类方程描述了分数阶介质中的色散输运。这些方程可以通过一个广泛通用的数学过程,利用完备性关系、色散关系和逆散射变换技术,从非线性可积方程构造出来。作为例子,这种通用方法被用于刻画两个与物理相关的、普遍存在的可积非线性方程的分数阶扩展:科特韦格 - 德弗里斯方程和非线性薛定谔方程。结果表明,这些方程能够预测分数阶介质中非耗散孤子的超色散输运。

相似文献

1
Fractional Integrable Nonlinear Soliton Equations.分数阶可积非线性孤子方程
Phys Rev Lett. 2022 May 6;128(18):184101. doi: 10.1103/PhysRevLett.128.184101.
3
Compacton solutions in a class of generalized fifth-order Korteweg-de Vries equations.一类广义五阶科特韦格 - 德弗里斯方程中的紧孤立子解。
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Aug;64(2 Pt 2):026608. doi: 10.1103/PhysRevE.64.026608. Epub 2001 Jul 20.
4
Kinetic equation for a dense soliton gas.稠密孤子气体的动力学方程。
Phys Rev Lett. 2005 Nov 11;95(20):204101. doi: 10.1103/PhysRevLett.95.204101. Epub 2005 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验