Suppr超能文献

新型 QSAR 模型的开发,用于预测水、沉积物和土壤中的半衰期。

Development of new QSAR models for water, sediment, and soil half-life.

机构信息

Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCSS, Milano, Italy.

Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCSS, Milano, Italy; Kode Chemoinformatics s.r.l., Via Nino Pisano 14, 56122 Pisa, Italy.

出版信息

Sci Total Environ. 2022 Sep 10;838(Pt 1):156004. doi: 10.1016/j.scitotenv.2022.156004. Epub 2022 May 17.

Abstract

Checking the persistence of a chemical in the environment is extremely important. Regulations like REACH, the European one on chemicals, require the measurements or estimates of the half-life of the chemical in water, sediment, and soil. The use of non-testing methods, like quantitative structure-activity relationship (QSAR) models, is encouraged because it reduces costs and time. To our knowledge, there are very few freely available models for these properties and some are for specific chemical classes. Here, we present three new semi-quantitative models, one for each of the required environmental compartments (water, sediment, and soil). Using literature and REACH registration data, we developed three new counter-propagation artificial neural network models using the CPANNatNIC tool. We calculated the VEGA descriptors, and selected the relevant ones using an internal method in R based on the forward selection technique. The best model for each compartment was implemented in two open-source stand-alone tools, the VEGA platform, and the JANUS tool (https://www.vegahub.eu/). These models were also used by ECHA to build their PBT profiler available in the OECD QSAR toolbox (https://qsartoolbox.org/). Screening and prioritization are also our main target. The models perform well, with R always above 0.8 in training and validation. The only exception is the validation set of the soil compartment, with R 0.68, that is above 0.8 only for compounds inside the applicability domain (automatically calculated by the system). The root mean square error (RMSE) is good, 0.34 or less in log units (again, for soil validation it is higher but it reaches 0.21 when considering only the compounds in the applicability domain). Compared with one of the most widely used tools, BIOWIN3, the proposed models give better results in terms of R and RMSE. For the classification, the performance is better for water and soil, and comparable or lower for sediment.

摘要

检查化学物质在环境中的持久性是极其重要的。像 REACH 这样的法规,即欧洲的化学物质法规,要求测量或估计化学物质在水、沉积物和土壤中的半衰期。鼓励使用非测试方法,如定量构效关系(QSAR)模型,因为它可以降低成本和时间。据我们所知,很少有免费提供的此类属性模型,有些模型是针对特定的化学物质类别。在这里,我们提出了三个新的半定量模型,分别用于所需的三个环境隔室(水、沉积物和土壤)。我们使用文献和 REACH 注册数据,使用 CPANNatNIC 工具开发了三个新的对抗传播人工神经网络模型。我们计算了 VEGA 描述符,并使用基于正向选择技术的 R 中的内部方法选择了相关的描述符。每个隔室的最佳模型都在两个开源独立工具中实现,即 VEGA 平台和 JANUS 工具(https://www.vegahub.eu/)。ECHA 还使用这些模型构建了其在 OECD QSAR 工具箱中可用的 PBT 分析器(https://qsartoolbox.org/)。筛选和优先级排序也是我们的主要目标。模型表现良好,在训练和验证中 R 始终高于 0.8。唯一的例外是土壤隔室的验证集,R 为 0.68,仅在适用性域内的化合物(系统自动计算)时才高于 0.8。均方根误差(RMSE)也很好,对数单位在 0.34 或以下(同样,对于土壤验证,它更高,但在仅考虑适用性域内的化合物时,它达到 0.21)。与最广泛使用的工具之一 BIOWIN3 相比,所提出的模型在 R 和 RMSE 方面给出了更好的结果。就分类而言,水和土壤的性能更好,而沉积物的性能相当或更低。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验