Bajželj Benjamin, Novič Marjana, Drgan Viktor
Laboratory for Cheminformatics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia.
Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
Toxics. 2025 May 9;13(5):383. doi: 10.3390/toxics13050383.
Quantitative structure-activity relationship (QSAR) models are essential for predicting endpoints that are otherwise challenging to estimate using other in silico approaches. Developing interpretable models for endpoint prediction is valuable as interpretable models may provide valuable insights into the relationship between molecular structure and observed biological or toxicological properties of compounds. In this study, we introduce a novel modification of counter-propagation artificial neural networks that aims to identify key molecular features responsible for classifying molecules into specific endpoint classes. The novel approach presented in this work dynamically adjusts molecular descriptor importance during model training, allowing different molecular descriptor importance values for structurally different molecules, which increases its adaptability to diverse sets of compounds. We applied the method to enzyme inhibition and hepatotoxicity classification datasets. Our findings show that the proposed approach improves the classification of molecules, reduces the number of neurons excited by molecules from different endpoint classes, and increases the number of acceptable models. The proposed approach may be useful in compound toxicity prediction and drug design studies.
定量构效关系(QSAR)模型对于预测那些使用其他计算机模拟方法难以估计的终点至关重要。开发用于终点预测的可解释模型很有价值,因为可解释模型可能会为分子结构与化合物观察到的生物学或毒理学性质之间的关系提供有价值的见解。在本研究中,我们引入了一种对反向传播人工神经网络的新颖改进,旨在识别负责将分子分类到特定终点类别的关键分子特征。这项工作中提出的新方法在模型训练期间动态调整分子描述符的重要性,允许结构不同的分子具有不同的分子描述符重要性值,这增加了其对不同化合物集的适应性。我们将该方法应用于酶抑制和肝毒性分类数据集。我们的研究结果表明,所提出的方法改进了分子分类,减少了来自不同终点类别的分子激发的神经元数量,并增加了可接受模型的数量。所提出的方法可能在化合物毒性预测和药物设计研究中有用。