Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany.
Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058, Erlangen, Germany.
Sci Rep. 2022 May 20;12(1):8510. doi: 10.1038/s41598-022-12430-y.
Due to the pivotal role of angiogenesis in bone regeneration, the angiogenic properties of biomaterials are of high importance since they directly correlate with the biomaterials' osteogenic potential via 'angiogenic-osteogenic coupling' mechanisms. The impact of bioactive glasses (BGs) on vascularization can be tailored by incorporation of biologically active ions such as boron (B). Based on the ICIE16-BG composition (in mol%: 49.5 SiO, 36.3 CaO, 6.6 NaO, 1.1 PO, 6.6 KO), three B-doped BGs have been developed (compositions in mol%: 46.5/45.5/41.5 SiO, 36.3 CaO, 6.6 NaO, 1.1 PO, 6.6 KO, 3/4/8 BO). The influence of B-doping on the viability, cellular osteogenic differentiation and expression of osteogenic and angiogenic marker genes of bone marrow-derived mesenchymal stromal cells (BMSCs) was analyzed by cultivating BMSCs in presence of the BGs' ionic dissolution products (IDPs). Furthermore, the influence of the IDPs on angiogenesis was evaluated in ovo using a chorioallantoic membrane (CAM) assay. The influence of B-doped BGs on BMSC viability was dose-dependent, with higher B concentrations showing limited negative effects. B-doping led to a slight stimulation of osteogenesis and angiogenesis in vitro. In contrast to that, B-doping significantly enhanced vascularization in ovo, especially in higher concentrations. Differences between the results of the in vitro and in ovo part of this study might be explained via the different importance of vascularization in both settings. The implementation of new experimental models that cover the 'angiogenic-osteogenic coupling' mechanisms is highly relevant, for instance via extending the application of the CAM assay from solely angiogenic to angiogenic and osteogenic purposes.
由于血管生成在骨再生中的关键作用,生物材料的血管生成特性非常重要,因为它们通过“血管生成-成骨偶联”机制与生物材料的成骨潜能直接相关。通过掺入硼(B)等具有生物活性的离子,可以调整生物活性玻璃(BGs)对血管化的影响。基于 ICIE16-BG 组成(以摩尔%计:49.5SiO、36.3CaO、6.6NaO、1.1PO、6.6KO),开发了三种 B 掺杂 BGs(组成以摩尔%计:46.5/45.5/41.5SiO、36.3CaO、6.6NaO、1.1PO、6.6KO、3/4/8BO)。通过在 BGs 离子溶解产物(IDPs)存在下培养骨髓间充质基质细胞(BMSCs),分析了 B 掺杂对 BMSCs 活力、细胞成骨分化以及成骨和血管生成标记基因表达的影响。此外,通过鸡胚绒毛尿囊膜(CAM)试验评估了 IDPs 对血管生成的影响。B 掺杂 BGs 对 BMSC 活力的影响呈剂量依赖性,较高的 B 浓度显示出有限的负面影响。B 掺杂在体外轻度刺激成骨和血管生成。与之相反,B 掺杂在体内显著增强了血管生成,特别是在较高浓度下。本研究的体外和体内部分结果之间的差异可以通过两种环境中血管生成的不同重要性来解释。实施新的实验模型,涵盖“血管生成-成骨偶联”机制非常重要,例如通过将 CAM 试验的应用从单纯的血管生成扩展到血管生成和成骨目的。