Suppr超能文献

基于第一性原理研究的六方氮化硼对多巴胺、色氨酸、抗坏血酸和尿酸传感的基本机制。

Fundamental mechanisms of hexagonal boron nitride sensing of dopamine, tryptophan, ascorbic acid, and uric acid by first-principles study.

机构信息

Department of Chemistry, Shahid Rajayee Teacher Training University, Tehran, Iran.

Department of Physics and Energy Engineering, Amirkabir University of Technology, Tehran, Iran.

出版信息

J Mol Model. 2022 May 20;28(6):158. doi: 10.1007/s00894-022-05158-z.

Abstract

Selectivity of dopamine (DA), uric acid (UA), and ascorbic acid (AA) is an open challenge of electrochemical sensors in the field of biosensing. In this study, two selective mechanisms for detecting DA, UA, and AA biomolecules on the pristine boron nitride nanosheets (BNNS) and functionalized BNNS with tryptophan (Trp), i.e., Trp@BNNS have been illustrated through density functional density (DFT) calculation and charge population analysis. Our findings reveal that the adsorbed biomolecules on Trp@BNNS indicate the less sensitivity factor of biomolecule separation than the functionalized biomolecules with Trp (Trp@biomolecule) adsorbed on pristine BNNS. From the calculations, strong adsorption of Trp@biomolecule on the pristine substrate corresponds to enhancing of electron charge transfer and electrical dipole moment. Our analysis is in good agreement with the previous theoretical and experimental results and suggests new pathway for electrode modification for electrochemical biosensing.

摘要

多巴胺(DA)、尿酸(UA)和抗坏血酸(AA)的选择性是生物传感领域电化学传感器的一个开放性挑战。在这项研究中,通过密度泛函密度(DFT)计算和电荷分布分析,说明了在原始氮化硼纳米片(BNNS)和色氨酸(Trp)功能化 BNNS 上检测 DA、UA 和 AA 生物分子的两种选择性机制,即 Trp@BNNS。我们的研究结果表明,与吸附在原始 BNNS 上的 Trp 功能化生物分子(Trp@biomolecule)相比,吸附在 Trp@BNNS 上的生物分子的生物分子分离灵敏度因子较低。从计算结果来看,Trp@biomolecule 在原始基底上的强吸附对应于电子电荷转移和电偶极矩的增强。我们的分析与以前的理论和实验结果吻合较好,为电化学生物传感的电极修饰提供了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验