Suppr超能文献

将肥胖问题量表映射到 SF-6D:基于斯堪的纳维亚肥胖手术登记处(SOReg)的结果。

Mapping the obesity problems scale to the SF-6D: results based on the Scandinavian Obesity Surgery Registry (SOReg).

机构信息

Department of Epidemiology and Global Health, Umeå University, 90185, Umeå, Sweden.

Research Group Health Outcomes and Economic Evaluation, Department of Learning, Informatics, Management and Ethics, Karolinska Instiutet, Solna, Sweden.

出版信息

Eur J Health Econ. 2023 Mar;24(2):279-292. doi: 10.1007/s10198-022-01473-7. Epub 2022 May 20.

Abstract

BACKGROUND

Obesity Problem Scale (OP) is a widely applied instrument for obesity, however currently calculation of health utility based on OP is not feasible as it is not a preference-based measure. Using data from the Scandinavian Obesity Surgery Registry (SOReg), we sought to develop a mapping algorithm to estimate SF-6D utility from OP. Furthermore, to test whether the mapping algorithm is robust to the effect of surgery.

METHOD

The source data SOReg (n = 36 706) contains both OP and SF-36, collected at pre-surgery and at 1, 2 and 5 years post-surgery. The Ordinary Least Square (OLS), beta-regression and Tobit regression were used to predict the SF-6D utility for different time points respectively. Besides the main effect model, different combinations of patient characteristics (age, sex, Body Mass Index, obesity-related comorbidities) were tested. Both internal validation (split-sample validation) and validation with testing the mapping algorithm on a dataset from other time points were carried out. A multi-stage model selection process was used, accessing model consistency, parsimony, goodness-of-fit and predictive accuracy. Models with the best performance were selected as the final mapping algorithms.

RESULTS

The final mapping algorithms were based on OP summary score using OLS models, for pre- and post-surgery respectively. Mapping algorithms with different combinations of patients' characteristics were presented, to satisfy the user with a different need.

CONCLUSION

This study makes available algorithms enabling crosswalk from the Obesity Problem Scale to the SF-6D utility. Different mapping algorithms are recommended for the mapping of pre- and post-operative data.

摘要

背景

肥胖问题量表(OP)是一种广泛应用于肥胖症的工具,但由于它不是基于偏好的衡量标准,目前基于 OP 计算健康效用是不可行的。利用来自斯堪的纳维亚肥胖手术登记处(SOReg)的数据,我们试图开发一种映射算法,以从 OP 估算 SF-6D 效用。此外,还测试了映射算法对手术效果的稳健性。

方法

原始数据 SOReg(n=36706)包含术前和术后 1、2 和 5 年的 OP 和 SF-36。我们分别使用普通最小二乘法(OLS)、β回归和 Tobit 回归来预测不同时间点的 SF-6D 效用。除了主要效应模型外,还测试了患者特征(年龄、性别、体重指数、肥胖相关合并症)的不同组合。进行了内部验证(分割样本验证)和使用来自其他时间点的数据集测试映射算法的验证。使用多阶段模型选择过程,评估模型的一致性、简约性、拟合优度和预测准确性。选择表现最佳的模型作为最终的映射算法。

结果

最终的映射算法基于 OLS 模型的 OP 综合评分,分别用于术前和术后。还提出了基于不同患者特征组合的映射算法,以满足用户的不同需求。

结论

本研究提供了从肥胖问题量表到 SF-6D 效用的转换算法。推荐了不同的映射算法用于术前和术后数据的映射。

相似文献

9
Mapping the disease-specific LupusQoL to the SF-6D.将特定疾病的狼疮生活质量量表(LupusQoL)映射到SF-6D量表。
Qual Life Res. 2015 Jul;24(7):1749-58. doi: 10.1007/s11136-014-0892-4. Epub 2014 Dec 16.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验