Suppr超能文献

基于语义分割的引导检测器用于 MRI 图像中急性缺血性脑卒中的分割、分类和病灶定位。

Semantic segmentation guided detector for segmentation, classification, and lesion mapping of acute ischemic stroke in MRI images.

机构信息

Department of Neurology, Chang Gung Memorial Hospital, Keelung, Taiwan; Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan; Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan.

Department of Neurology, Chang Gung Memorial Hospital, Keelung, Taiwan; Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.

出版信息

Neuroimage Clin. 2022;35:103044. doi: 10.1016/j.nicl.2022.103044. Epub 2022 May 12.

Abstract

BACKGROUND AND PURPOSE

MRI images timely and accurately reflect ischemic injuries to the brain tissues and, therefore, can support clinical decision-making of acute ischemic stroke (AIS). To maximize the information provided by the MRI images, we leverage deep learning models to segment, classify, and map lesion distributions of AIS.

METHODS

We evaluated brain MRI images of AIS patients from 2017 to 2020 at a tertiary teaching hospital and developed the Semantic Segmentation Guided Detector Network (SGD-Net), composed of the first U-shaped model for segmentation in diffusion-weighted imaging (DWI) and the second model for binary classification of lesion size (lacune vs. non-lacune) and circulatory territory of lesion location (anterior vs. posterior circulation). Next, we modified the two-stage deep learning model into SGD-Net Plus by automatically segmenting AIS lesions in DWI images and registering the lesion in T1-weighted images and the brain atlases.

RESULTS

The final enrollment (216 patients with 4606 slices) was divided into 80% for model development and 20% for testing. S1 model segmented AIS lesions in DWI images accurately with a pixel accuracy > 99% (Dice 0.806-0.828 and IoU 0.675-707). In comprehensive evaluation of classification performance, the two-stage SGD-Net outperformed the traditional one-stage models in classifying AIS lesion size (accuracy 0.867-0.956 vs. 0.511-0.867, AUROC 0.962-0.992 vs. 0.528-0.937, AUPRC 0.964-0.994 vs. 0.549-0.938) and location (accuracy 0.860-0.930 vs. 0.326-0.721, AUROC 0.936-0.988 vs. 0.493-0.833, AUPRC 0.883-0.978 vs. 0.365-0.695). The precise lesion segmentation at the first stage of the deep learning model was the basis for further application. After that, the modified two-stage model SGD-Net Plus accurately reported the volume, region percentage, and lesion percentage of each region on the selected brain atlas. Its reports provided clear descriptions and quantifications of the AIS-related brain injuries on white matter tracts, Brodmann areas, and cytoarchitectonic areas.

CONCLUSION

Domain knowledge-oriented design of artificial intelligence applications can deepen our understanding of patients' conditions and strengthen the use of MRI for patient care. SGD-Net precisely segments AIS lesions on DWI and accurately classifies the lesions. In addition, SGD-Net Plus maps the AIS lesions and quantifies their occupancy in each brain region. They are practical tools to meet the clinical needs and enrich educational resources of neuroimage.

摘要

背景与目的

MRI 图像能及时准确地反映脑实质的缺血损伤,因此能为急性缺血性脑卒中(AIS)的临床决策提供支持。为了充分利用 MRI 图像提供的信息,我们利用深度学习模型对 AIS 的病变分布进行分割、分类和映射。

方法

我们评估了一家三级教学医院 2017 年至 2020 年期间 AIS 患者的脑部 MRI 图像,并开发了语义分割引导检测网络(SGD-Net),包括用于弥散加权成像(DWI)分割的第一个 U 型模型和用于病变大小(腔隙性 vs 非腔隙性)和病变位置循环区域(前循环 vs 后循环)的二进制分类的第二个模型。接下来,我们通过自动分割 DWI 图像中的 AIS 病变,并将病变与 T1 加权图像和大脑图谱进行配准,将两阶段深度学习模型修改为 SGD-Net Plus。

结果

最终入组(216 例患者,4606 个层面)分为 80%用于模型开发和 20%用于测试。S1 模型对 DWI 图像中的 AIS 病变进行了准确的分割,像素准确率>99%(Dice 0.806-0.828 和 IoU 0.675-707)。在综合评估分类性能时,两阶段 SGD-Net 在分类 AIS 病变大小(准确性 0.867-0.956 vs. 0.511-0.867,AUROC 0.962-0.992 vs. 0.528-0.937,AUPRC 0.964-0.994 vs. 0.549-0.938)和位置(准确性 0.860-0.930 vs. 0.326-0.721,AUROC 0.936-0.988 vs. 0.493-0.833,AUPRC 0.883-0.978 vs. 0.365-0.695)方面优于传统的单阶段模型。深度学习模型第一阶段的精确病变分割是进一步应用的基础。在此之后,改进后的两阶段模型 SGD-Net Plus 能够准确地报告所选大脑图谱上每个区域的体积、区域百分比和病变百分比。它的报告提供了对白质束、布罗德曼区和细胞构筑区与 AIS 相关的脑损伤的清晰描述和量化。

结论

以领域知识为导向的人工智能应用设计可以加深我们对患者病情的了解,并加强 MRI 在患者护理中的应用。SGD-Net 可以精确地分割 DWI 上的 AIS 病变,并准确地对病变进行分类。此外,SGD-Net Plus 可以映射 AIS 病变并量化其在每个脑区的占位率。它们是满足临床需求和丰富神经影像教育资源的实用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15f0/9123273/60352c85cbbb/ga1.jpg

相似文献

2
The role of input imaging combination and ADC threshold on segmentation of acute ischemic stroke lesion using U-Net.
Eur Radiol. 2023 Sep;33(9):6157-6167. doi: 10.1007/s00330-023-09622-z. Epub 2023 Apr 25.
4
Predicting Hypoperfusion Lesion and Target Mismatch in Stroke from Diffusion-weighted MRI Using Deep Learning.
Radiology. 2023 Apr;307(1):e220882. doi: 10.1148/radiol.220882. Epub 2022 Dec 6.
5
Automated multimodal segmentation of acute ischemic stroke lesions on clinical MR images.
Magn Reson Imaging. 2022 Oct;92:45-57. doi: 10.1016/j.mri.2022.06.001. Epub 2022 Jun 7.
7
Diffusion-/perfusion-weighted imaging fusion to automatically identify stroke within 4.5 h.
Eur Radiol. 2024 Oct;34(10):6808-6819. doi: 10.1007/s00330-024-10619-5. Epub 2024 Mar 15.
10
Automatic assessment of DWI-ASPECTS for acute ischemic stroke based on deep learning.
Med Phys. 2024 Jun;51(6):4351-4364. doi: 10.1002/mp.17101. Epub 2024 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验