Department of Biochemistry and Molecular Biology, Complex Carbohydrate Resource Center, University of Georgia, Athens, Georgia, USA.
Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain.
J Biol Chem. 2022 Jun;298(6):102047. doi: 10.1016/j.jbc.2022.102047. Epub 2022 May 18.
Thrombospondin type-1 repeats (TSRs) are small protein motifs containing six conserved cysteines forming three disulfide bonds that can be modified with an O-linked fucose. Protein O-fucosyltransferase 2 (POFUT2) catalyzes the addition of O-fucose to TSRs containing the appropriate consensus sequence, and the O-fucose modification can be elongated to a Glucose-Fucose disaccharide with the addition of glucose by β3-glucosyltransferase (B3GLCT). Elimination of Pofut2 in mice results in embryonic lethality in mice, highlighting the biological significance of O-fucose modification on TSRs. Knockout of POFUT2 in HEK293T cells has been shown to cause complete or partial loss of secretion of many proteins containing O-fucosylated TSRs. In addition, POFUT2 is localized to the endoplasmic reticulum (ER) and only modifies folded TSRs, stabilizing their structures. These observations suggest that POFUT2 is involved in an ER quality control mechanism for TSR folding and that B3GLCT also participates in quality control by providing additional stabilization to TSRs. However, the mechanisms by which addition of these sugars result in stabilization are poorly understood. Here, we conducted molecular dynamics (MD) simulations and provide crystallographic and NMR evidence that the Glucose-Fucose disaccharide interacts with specific amino acids in the TSR3 domain in thrombospondin-1 that are within proximity to the O-fucosylation modification site resulting in protection of a nearby disulfide bond. We also show that mutation of these amino acids reduces the stabilizing effect of the sugars in vitro. These data provide mechanistic details regarding the importance of O-fucosylation and how it participates in quality control mechanisms inside the ER.
血栓反应蛋白型-1 重复序列(TSRs)是含有六个保守半胱氨酸的小蛋白基序,形成三个二硫键,可以通过 O-连接岩藻糖进行修饰。蛋白 O-岩藻糖基转移酶 2(POFUT2)催化具有适当共识序列的 TSRs 中 O-岩藻糖的添加,并且 O-岩藻糖修饰可以通过β3-葡萄糖基转移酶(B3GLCT)的添加延长为葡萄糖-岩藻糖二糖。在小鼠中消除 Pofut2 会导致小鼠胚胎致死,突出了 O-岩藻糖修饰对 TSRs 的生物学意义。在 HEK293T 细胞中敲除 POFUT2 已显示出许多含有 O-岩藻糖化 TSRs 的蛋白质完全或部分丧失分泌。此外,POFUT2 定位于内质网(ER),仅修饰折叠的 TSRs,稳定其结构。这些观察结果表明,POFUT2 参与 TSR 折叠的 ER 质量控制机制,并且 B3GLCT 通过为 TSRs 提供额外的稳定性也参与质量控制。然而,这些糖的添加如何导致稳定性的机制尚不清楚。在这里,我们进行了分子动力学(MD)模拟,并提供了晶体学和 NMR 证据,表明葡萄糖-岩藻糖二糖与血栓反应蛋白-1 中的 TSR3 结构域中的特定氨基酸相互作用,这些氨基酸与 O-岩藻糖修饰位点接近,导致附近二硫键的保护。我们还表明,这些氨基酸的突变会降低糖在体外的稳定作用。这些数据提供了关于 O-岩藻糖化的重要性及其如何参与 ER 内质量控制机制的机制细节。