Suppr超能文献

一种具有成本效益的计算方法,可准确预测 JAK2 抑制剂的结合亲和力。

A computationally affordable approach for accurate prediction of the binding affinity of JAK2 inhibitors.

机构信息

Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Vietnam.

Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.

出版信息

J Mol Model. 2022 May 23;28(6):163. doi: 10.1007/s00894-022-05149-0.

Abstract

Janus kinase 2 (JAK2) inhibitors are potential anticancer drugs in the treatment of lymphoma, leukemia, thrombocytosis and particularly myeloproliferative diseases. However, the resemblance among JAK family members has challenged the identification of highly selective inhibitors for JAK2 to reduce undesired side effects. As a result, a robust search for promising JAK2 inhibitors using a computational approach that can effectively nominate new potential candidates to be further analyzed through laborious experimental operations has become necessary. In this study, the binding affinities of JAK2 inhibitors were rapidly and precisely estimated using the fast pulling of ligand (FPL) simulations combined with a modified linear interaction energy (LIE) method. The approach correlates with the experimental binding affinities of JAK2 inhibitors with a correlation coefficient of R = 0.82 and a root-mean-square error of 0.67 kcal•mol. The data reveal that the FPL/LIE method is highly approximate in anticipating the relative binding free energies of known JAK2 inhibitors with an affordable consumption of computational resources, and thus, it is very promising to be applied in in silico screening for new potential JAK2 inhibitors from a large number of molecules available.

摘要

Janus 激酶 2(JAK2)抑制剂是治疗淋巴瘤、白血病、血小板增多症,尤其是骨髓增生性疾病的潜在抗癌药物。然而,JAK 家族成员之间的相似性给寻找高度选择性 JAK2 抑制剂带来了挑战,以减少不必要的副作用。因此,需要使用计算方法来寻找有前途的 JAK2 抑制剂,这种方法可以有效地提名新的潜在候选药物,以便通过繁琐的实验操作进行进一步分析。在这项研究中,使用快速拉取配体(FPL)模拟结合改进的线性相互作用能(LIE)方法,快速准确地估计了 JAK2 抑制剂的结合亲和力。该方法与 JAK2 抑制剂的实验结合亲和力相关,相关系数为 R = 0.82,均方根误差为 0.67 kcal•mol。数据表明,FPL/LIE 方法在预测已知 JAK2 抑制剂的相对结合自由能方面非常近似,计算资源消耗可承受,因此非常有希望应用于从大量现有分子中筛选新的潜在 JAK2 抑制剂的计算筛选。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验