Suppr超能文献

度量测度空间上的哈代不等式,II:p > 1的情形

Hardy inequalities on metric measure spaces, II: the case  > .

作者信息

Ruzhansky Michael, Verma Daulti

机构信息

Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Krijgslaan, 281, Building S8, B, 9000 Ghent, Belgium.

School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.

出版信息

Proc Math Phys Eng Sci. 2021 Jun;477(2250):20210136. doi: 10.1098/rspa.2021.0136. Epub 2021 Jun 9.

Abstract

In this paper, we continue our investigations giving the characterization of weights for two-weight Hardy inequalities to hold on general metric measure spaces possessing polar decompositions. Since there may be no differentiable structure on such spaces, the inequalities are given in the integral form in the spirit of Hardy's original inequality. This is a continuation of our paper (Ruzhansky & Verma 2018. , 20180310 (doi:10.1098/rspa.2018.0310)) where we treated the case  ≤ . Here the remaining range  >  is considered, namely, 0 <  < , 1 <  < ∞. We give several examples of the obtained results, finding conditions on the weights for integral Hardy inequalities on homogeneous groups, as well as on hyperbolic spaces and on more general Cartan-Hadamard manifolds. As in the first part of this paper, we do not need to impose doubling conditions on the metric.

摘要

在本文中,我们继续进行研究,给出在具有极分解的一般度量测度空间上使双权Hardy不等式成立的权函数的特征描述。由于此类空间可能不存在可微结构,所以这些不等式是按照Hardy原始不等式的精神以积分形式给出的。这是我们论文(Ruzhansky & Verma 2018. ,20180310 (doi:10.1098/rspa.2018.0310))的延续,在那篇论文中我们处理了 ≤ 的情况。这里考虑剩余的范围 > ,即0 < < ,1 < < ∞。我们给出了几个所得结果的例子,找到了齐性群、双曲空间以及更一般的Cartan - Hadamard流形上积分Hardy不等式的权函数条件。如同本文第一部分一样,我们无需对度量施加加倍条件。

相似文献

1
Hardy inequalities on metric measure spaces, II: the case  > .度量测度空间上的哈代不等式,II:p > 1的情形
Proc Math Phys Eng Sci. 2021 Jun;477(2250):20210136. doi: 10.1098/rspa.2021.0136. Epub 2021 Jun 9.
2
Hardy inequalities on metric measure spaces.度量测度空间上的哈代不等式。
Proc Math Phys Eng Sci. 2019 Mar;475(2223):20180310. doi: 10.1098/rspa.2018.0310. Epub 2019 Mar 6.
3
Sharp Cheeger-Buser Type Inequalities in Spaces.空间中的尖锐切赫 - 布瑟型不等式
J Geom Anal. 2021;31(3):2416-2438. doi: 10.1007/s12220-020-00358-6. Epub 2020 Feb 14.
5
On the best possible remaining term in the Hardy inequality.关于哈代不等式中最优可能的余项。
Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13746-51. doi: 10.1073/pnas.0803703105. Epub 2008 Sep 15.
8
Hardy-type inequalities in fractional -discrete calculus.分数阶离散微积分中的哈代型不等式
J Inequal Appl. 2018;2018(1):73. doi: 10.1186/s13660-018-1662-6. Epub 2018 Apr 4.
9
The modified proximal point algorithm in Hadamard spaces.哈达玛空间中的修正近端点算法。
J Inequal Appl. 2018;2018(1):124. doi: 10.1186/s13660-018-1713-z. Epub 2018 May 24.
10
Almost-Riemannian manifolds do not satisfy the curvature-dimension condition.几乎黎曼流形不满足曲率-维数条件。
Calc Var Partial Differ Equ. 2023;62(4):123. doi: 10.1007/s00526-023-02466-x. Epub 2023 Mar 20.

本文引用的文献

1
Hardy inequalities on metric measure spaces.度量测度空间上的哈代不等式。
Proc Math Phys Eng Sci. 2019 Mar;475(2223):20180310. doi: 10.1098/rspa.2018.0310. Epub 2019 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验