Suppr超能文献

使用解缠表示的小肠分割无监督域适应

Unsupervised Domain Adaptation for Small Bowel Segmentation using Disentangled Representation.

作者信息

Shin Seung Yeon, Lee Sungwon, Summers Ronald M

机构信息

Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA.

出版信息

Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12903:282-292. doi: 10.1007/978-3-030-87199-4_27. Epub 2021 Sep 21.

Abstract

We present a novel unsupervised domain adaptation method for small bowel segmentation based on feature disentanglement. To make the domain adaptation more controllable, we disentangle intensity and non-intensity features within a unique two-stream auto-encoding architecture, and selectively adapt the non-intensity features that are believed to be more transferable across domains. The segmentation prediction is performed by aggregating the disentangled features. We evaluated our method using intravenous contrast-enhanced abdominal CT scans with and without oral contrast, which are used as source and target domains, respectively. The proposed method showed clear improvements in terms of three different metrics compared to other domain adaptation methods that are without the feature disentanglement. The method brings small bowel segmentation closer to clinical application.

摘要

我们提出了一种基于特征解缠的新型无监督域适应方法用于小肠分割。为了使域适应更可控,我们在独特的双流自动编码架构中解缠强度特征和非强度特征,并选择性地适应那些被认为在不同域之间更具可迁移性的非强度特征。分割预测通过聚合解缠后的特征来执行。我们使用分别作为源域和目标域的有静脉注射对比剂的腹部CT扫描(有口服对比剂)和无口服对比剂的腹部CT扫描来评估我们的方法。与其他没有特征解缠的域适应方法相比,所提出的方法在三种不同指标方面有明显改进。该方法使小肠分割更接近临床应用。

相似文献

1
Unsupervised Domain Adaptation for Small Bowel Segmentation using Disentangled Representation.使用解缠表示的小肠分割无监督域适应
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12903:282-292. doi: 10.1007/978-3-030-87199-4_27. Epub 2021 Sep 21.

引用本文的文献

1
Deep Reinforcement Learning for Small Bowel Path Tracking using Different Types of Annotations.使用不同类型注释的小肠路径跟踪深度强化学习
Med Image Comput Comput Assist Interv. 2022 Sep;13435:549-559. doi: 10.1007/978-3-031-16443-9_53. Epub 2022 Sep 16.
2
GRAPH-BASED SMALL BOWEL PATH TRACKING WITH CYLINDRICAL CONSTRAINTS.基于图形的带圆柱约束的小肠路径跟踪
Proc IEEE Int Symp Biomed Imaging. 2022 Mar;2022. doi: 10.1109/isbi52829.2022.9761423. Epub 2022 Apr 26.
4
A Graph-theoretic Algorithm for Small Bowel Path Tracking in CT Scans.一种用于CT扫描中小肠路径追踪的图论算法。
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12033. doi: 10.1117/12.2611878. Epub 2022 Apr 4.
6
Low-Resource Adversarial Domain Adaptation for Cross-Modality Nucleus Detection.用于跨模态细胞核检测的低资源对抗域适应
Med Image Comput Comput Assist Interv. 2022 Sep;13437:639-649. doi: 10.1007/978-3-031-16449-1_61. Epub 2022 Sep 17.

本文引用的文献

1
Deep Small Bowel Segmentation with Cylindrical Topological Constraints.基于圆柱拓扑约束的深部小肠分割
Med Image Comput Comput Assist Interv. 2020 Oct;12264:207-215. doi: 10.1007/978-3-030-59719-1_21. Epub 2020 Sep 29.
2
Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations.广义骰子重叠作为高度不平衡分割的深度学习损失函数
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2017). 2017;2017:240-248. doi: 10.1007/978-3-319-67558-9_28. Epub 2017 Sep 9.
8
Imaging the small bowel.小肠影像学。
Curr Opin Gastroenterol. 2014 Mar;30(2):134-40. doi: 10.1097/MOG.0000000000000038.
9
Mesenteric vasculature-guided small bowel segmentation on 3-D CT.肠系膜血管引导的 3D CT 小肠分段。
IEEE Trans Med Imaging. 2013 Nov;32(11):2006-21. doi: 10.1109/TMI.2013.2271487. Epub 2013 Jun 27.
10
3D Slicer as an image computing platform for the Quantitative Imaging Network.3D Slicer 作为定量成像网络的图像计算平台。
Magn Reson Imaging. 2012 Nov;30(9):1323-41. doi: 10.1016/j.mri.2012.05.001. Epub 2012 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验