Xie Qingsong, Li Yuexiang, He Nanjun, Ning Munan, Ma Kai, Wang Guoxing, Lian Yong, Zheng Yefeng
IEEE Trans Med Imaging. 2024 Jan;43(1):4-14. doi: 10.1109/TMI.2022.3192303. Epub 2024 Jan 2.
Unsupervised domain adaption (UDA), which aims to enhance the segmentation performance of deep models on unlabeled data, has recently drawn much attention. In this paper, we propose a novel UDA method (namely DLaST) for medical image segmentation via disentanglement learning and self-training. Disentanglement learning factorizes an image into domain-invariant anatomy and domain-specific modality components. To make the best of disentanglement learning, we propose a novel shape constraint to boost the adaptation performance. The self-training strategy further adaptively improves the segmentation performance of the model for the target domain through adversarial learning and pseudo label, which implicitly facilitates feature alignment in the anatomy space. Experimental results demonstrate that the proposed method outperforms the state-of-the-art UDA methods for medical image segmentation on three public datasets, i.e., a cardiac dataset, an abdominal dataset and a brain dataset. The code will be released soon.
无监督域适应(UDA)旨在提高深度模型在未标记数据上的分割性能,最近受到了广泛关注。在本文中,我们提出了一种通过解缠学习和自训练进行医学图像分割的新型UDA方法(即DLaST)。解缠学习将图像分解为域不变的解剖结构和域特定的模态成分。为了充分利用解缠学习,我们提出了一种新颖的形状约束来提高适应性能。自训练策略通过对抗学习和伪标签进一步自适应地提高模型在目标域上的分割性能,这在解剖空间中隐式地促进了特征对齐。实验结果表明,该方法在三个公共数据集(即心脏数据集、腹部数据集和脑数据集)上的医学图像分割性能优于当前最先进的UDA方法。代码将很快发布。