Suppr超能文献

基于综合生物信息学分析的IgA肾病患者巨噬细胞特异性表达的预后生物标志物的鉴定与验证

Identification and Validation of Prognostic Biomarkers Specifically Expressed in Macrophage in IgA Nephropathy Patients Based on Integrated Bioinformatics Analyses.

作者信息

Ding Yuqing, Li Hua, Xu Lichen, Wang Yukun, Yang Huiying

机构信息

Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.

出版信息

Front Mol Biosci. 2022 May 5;9:884588. doi: 10.3389/fmolb.2022.884588. eCollection 2022.

Abstract

Immunoglobulin A nephropathy (IgAN) is the most common type of primary glomerulonephritis worldwide and a frequent cause of end-stage renal disease. The inflammation cascade due to the infiltration and activation of immune cells in glomeruli plays an essential role in the progression of IgAN. In this study, we aimed to identify hub genes involved in immune infiltration and explore potential prognostic biomarkers and therapeutic targets in IgAN. We combined the single-cell and bulk transcriptome profiles of IgAN patients and controls with clinical data. Through single-cell analysis and weighted gene co-expression network analysis (WGCNA), Gene Ontology (GO) enrichment analysis, and differentially expressed gene (DEG) analysis in the bulk profile, we identified cell-type-specific potential hub genes in IgAN. Real hub genes were extracted via validation analysis and clinical significance analysis of the correlation between the expression levels of genes and the estimated glomerular filtration rate (eGFR) in the external dataset. Gene set enrichment analysis was performed to predict the probable roles of the real hub genes in IgAN. A total of eleven cell clusters were classified via single-cell analysis, among which macrophages showed a variable proportion between the IgAN and normal control samples. We recognized six functional co-expression gene modules through WGCNA, among which the black module was deemed an IgAN-related and immune-involving module via GO enrichment analysis. DEG analysis identified 45 potential hub genes from genes enriched in GO terms. A total of twenty-three potential hub genes were specifically expressed in macrophages. Furthermore, we validated the differential expression of the 23 potential hub genes in the external dataset and identified nine genes with prognostic significance as real hub genes, viz., CSF1R, CYBB, FPR3, GPR65, HCLS1, IL10RA, PLA2G7, TYROBP, and VSIG4. The real hub gens are thought to contribute to immune cell regulation, immunoreaction, and regulation of oxidative stress, cell proliferation, and material metabolism. In this study, we demonstrated that macrophages infiltrated the glomeruli and contributed to the inflammatory response in IgAN. Based on integrated bioinformatics analyses of single-cell and bulk transcriptome data, we highlighted nine genes as novel prognostic biomarkers, which may enable the development of innovative prognostic and therapeutic strategies for IgAN.

摘要

免疫球蛋白A肾病(IgAN)是全球最常见的原发性肾小球肾炎类型,也是终末期肾病的常见病因。肾小球中免疫细胞的浸润和激活所引发的炎症级联反应在IgAN的进展中起着至关重要的作用。在本研究中,我们旨在识别参与免疫浸润的关键基因,并探索IgAN潜在的预后生物标志物和治疗靶点。我们将IgAN患者和对照组的单细胞和 bulk 转录组图谱与临床数据相结合。通过单细胞分析、加权基因共表达网络分析(WGCNA)、基因本体(GO)富集分析以及 bulk 图谱中的差异表达基因(DEG)分析,我们在IgAN中识别出了细胞类型特异性的潜在关键基因。通过对外部数据集中基因表达水平与估计肾小球滤过率(eGFR)之间相关性的验证分析和临床意义分析,提取出了真正的关键基因。进行基因集富集分析以预测真正的关键基因在IgAN中可能发挥的作用。通过单细胞分析共分类出11个细胞簇,其中巨噬细胞在IgAN和正常对照样本之间呈现出不同的比例。我们通过WGCNA识别出6个功能共表达基因模块,其中黑色模块经GO富集分析被认为是与IgAN相关且涉及免疫的模块。DEG分析从富集于GO术语的基因中鉴定出45个潜在的关键基因。共有23个潜在的关键基因在巨噬细胞中特异性表达。此外,我们在外部数据集中验证了这23个潜在关键基因的差异表达,并确定了9个具有预后意义的基因作为真正的关键基因,即集落刺激因子1受体(CSF1R)、细胞色素b-245β链(CYBB)、甲酰肽受体3(FPR3)、G蛋白偶联受体65(GPR65)、造血干细胞白血病相关蛋白1(HCLS1)、白细胞介素10受体α链(IL10RA)、磷脂酶A2G7(PLA2G7)、酪氨酸蛋白激酶结合蛋白(TYROBP)和V-set和免疫球蛋白结构域包含蛋白4(VSIG4)。这些真正的关键基因被认为有助于免疫细胞调节、免疫反应以及氧化应激、细胞增殖和物质代谢的调节。在本研究中,我们证明巨噬细胞浸润肾小球并在IgAN中促成炎症反应。基于对单细胞和 bulk 转录组数据的综合生物信息学分析,我们突出了9个基因作为新的预后生物标志物,这可能有助于开发针对IgAN的创新预后和治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d92b/9117719/9efd7e1e2480/fmolb-09-884588-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验