Suppr超能文献

基于新型文本多元自回归滑动平均模型的新冠疫情对中国股票市场影响的研究

A study of the impact of COVID-19 on the Chinese stock market based on a new textual multiple ARMA model.

作者信息

Xu Weijun, Fu Zhineng, Li Hongyi, Huang Jinglong, Xu Weidong, Luo Yiyang

机构信息

School of Business Administration South China University of Technology Guangzhou China.

Business School The Chinese University of Hong Kong Shatin Hong Kong.

出版信息

Stat Anal Data Min. 2022 Apr 4. doi: 10.1002/sam.11582.

Abstract

Coronavirus 2019 (COVID-19) has caused violent fluctuation in stock markets, and led to heated discussion in stock forums. The rise and fall of any specific stock is influenced by many other stocks and emotions expressed in forum discussions. Considering the transmission effect of emotions, we propose a new Textual Multiple Auto Regressive Moving Average (TM-ARMA) model to study the impact of COVID-19 on the Chinese stock market. The TM-ARMA model contains a new cross-textual term and a new cross-auto regressive (AR) term that measure the cross impacts of textual emotions and price fluctuations, respectively, and the adjacent matrix which measures the relationships among stocks is updated dynamically. We compute the textual sentiment scores by an emotion dictionary-based method, and estimate the parameter matrices by a maximum likelihood method. Our dataset includes the textual posts from the Eastmoney Stock Forum and the price data for the constituent stocks of the FTSE China A50 Index. We conduct a sliding-window online forecast approach to simulate the real-trading situations. The results show that TM-ARMA performs very well even after the attack of COVID-19.

摘要

2019年冠状病毒病(COVID-19)引发了股票市场的剧烈波动,并在股票论坛上引发了热烈讨论。任何特定股票的涨跌都受到许多其他股票以及论坛讨论中表达的情绪的影响。考虑到情绪的传播效应,我们提出了一种新的文本多元自回归移动平均(TM-ARMA)模型,以研究COVID-19对中国股票市场的影响。TM-ARMA模型包含一个新的跨文本项和一个新的交叉自回归(AR)项,分别用于衡量文本情绪和价格波动的交叉影响,并且动态更新衡量股票之间关系的邻接矩阵。我们通过基于情感词典的方法计算文本情感得分,并通过最大似然法估计参数矩阵。我们的数据集包括来自东方财富股票论坛的文本帖子以及富时中国A50指数成份股的价格数据。我们采用滑动窗口在线预测方法来模拟实际交易情况。结果表明,即使在受到COVID-19冲击之后,TM-ARMA模型的表现依然非常出色。

相似文献

6
Financial market sentiment and stock return during the COVID-19 pandemic.新冠疫情期间的金融市场情绪与股票回报
Financ Res Lett. 2023 Jun;54:103709. doi: 10.1016/j.frl.2023.103709. Epub 2023 Feb 17.
7
COVID-19, volatility dynamics, and sentiment trading.新冠病毒疾病、波动动态与情绪交易。
J Bank Financ. 2021 Dec;133:106162. doi: 10.1016/j.jbankfin.2021.106162. Epub 2021 May 1.

本文引用的文献

1
Stock markets' reaction to COVID-19: Cases or fatalities?股票市场对新冠疫情的反应:病例还是死亡人数?
Res Int Bus Finance. 2020 Dec;54:101249. doi: 10.1016/j.ribaf.2020.101249. Epub 2020 May 23.
2
Financial contagion during COVID-19 crisis.新冠疫情危机期间的金融传染
Financ Res Lett. 2021 Jan;38:101604. doi: 10.1016/j.frl.2020.101604. Epub 2020 May 23.
3
Financial markets under the global pandemic of COVID-19.新冠疫情全球大流行下的金融市场。
Financ Res Lett. 2020 Oct;36:101528. doi: 10.1016/j.frl.2020.101528. Epub 2020 Apr 16.
5
Robust Multicategory Support Matrix Machines.鲁棒多类别支持矩阵机
Math Program. 2019 Jul;176(1-2):429-463. doi: 10.1007/s10107-019-01386-z. Epub 2019 Mar 28.
6
Tensor Graphical Model: Non-Convex Optimization and Statistical Inference.张量图形模型:非凸优化与统计推断
IEEE Trans Pattern Anal Mach Intell. 2020 Aug;42(8):2024-2037. doi: 10.1109/TPAMI.2019.2907679. Epub 2019 Mar 26.
7
Adaptively weighted large-margin angle-based classifiers.自适应加权的基于大间隔角度的分类器。
J Multivar Anal. 2018 Jul;166:282-299. doi: 10.1016/j.jmva.2018.03.004. Epub 2018 Mar 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验