Suppr超能文献

开发一种用于镁合金植入物气体空泡形成行为的模型系统。

Development of a Model System for Gas Cavity Formation Behavior of Magnesium Alloy Implantation.

机构信息

Research Center for Functional Materials, National Institute for Materials Sciences, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.

出版信息

ACS Biomater Sci Eng. 2022 Jun 13;8(6):2437-2444. doi: 10.1021/acsbiomaterials.1c01429. Epub 2022 May 23.

Abstract

Clinical applications of magnesium (Mg)-based screws have reported gas cavity formation in the surrounding tissue, which sometimes delays the fixation of the bone fracture. The gas cavity formation is considered to depend on the balance between hydrogen generation by Mg corrosion reacting with water in the body fluid and its diffusion into the surrounding tissue by capillary flow. In order to understand the gas cavity formation behavior by Mg-based material implantation, we developed a new in vitro model system to recreate this cavity formation phenomenon: the hydrogen generation by corrosion and its diffusion into the medium. A model tissue is prepared by gelation of the cell culture medium in a sterile condition. The immersion of Mg alloy samples was performed under 5% CO atmosphere with periodic observation by X-ray computed tomography, which enabled us to observe gas cavity growth up to 28 d. For demonstrating the usefulness of our model system, Mg alloy samples with different corrosion rates were prepared by a biodegradable polymer coating. AZ31 screws were spin-coated by poly-l-lactide (PLLA) and classified into three groups by their coating thickness as 1.0 ± 0.0, 1.6 ± 0.2, and 2.0 ± 0.1 μm (ave. ± s.d.). Upon their immersion into the model tissue, the gas cavity volumes formed were 1.57 ± 0.23, 1.06 ± 0.22, and 0.38 ± 0.09 mm/mm for 1.0, 1.6, and 2.0 μm coating samples, having the weight loss of 20.2 ± 2.93, 18.5 ± 2.84, and 11.3 ± 3.54 μg/mm, respectively (ave. ± s.d.). This result clearly indicates the dependence of gas cavity formation on the corrosion rate of the sample. The gas cavity volume was only 3.3∼7.5% of the total hydrogen gas volume estimated based on the weight loss of the samples at 28 d, which is in the range of those calculated from the clinical report (3.2∼9.4% at 4w). This system can be an effective tool to investigate the gas cavity formation behavior and contribute to understand the mechanisms and controlling factors of this phenomenon.

摘要

临床应用表明,镁(Mg)基螺钉会在周围组织中形成气腔,这有时会延迟骨折的固定。气腔的形成被认为取决于镁腐蚀与体液中水反应产生的氢气与通过毛细作用扩散到周围组织的氢气之间的平衡。为了了解 Mg 基材料植入后的气腔形成行为,我们开发了一种新的体外模型系统来重现这种气腔形成现象:腐蚀产生的氢气及其向介质中的扩散。通过在无菌条件下凝胶化细胞培养基来制备模型组织。在 5% CO 气氛下进行镁合金样品的浸蚀,并定期通过 X 射线计算机断层扫描进行观察,这使我们能够观察到长达 28 天的气腔生长。为了证明我们的模型系统的有用性,我们通过生物可降解聚合物涂层制备了具有不同腐蚀速率的镁合金样品。将 AZ31 螺钉用聚 L-丙交酯(PLLA)进行旋涂,并根据涂层厚度将其分为三组,分别为 1.0 ± 0.0、1.6 ± 0.2 和 2.0 ± 0.1 μm(平均值 ± 标准偏差)。当将它们浸入模型组织中时,在 1.0、1.6 和 2.0 μm 涂层样品中形成的气腔体积分别为 1.57 ± 0.23、1.06 ± 0.22 和 0.38 ± 0.09 mm/mm,相应的重量损失分别为 20.2 ± 2.93、18.5 ± 2.84 和 11.3 ± 3.54 μg/mm(平均值 ± 标准偏差)。这一结果清楚地表明气腔形成取决于样品的腐蚀速率。气腔体积仅占样品在 28 天时的总氢气体积的 3.3∼7.5%,这与临床报告中的值(4w 时为 3.2∼9.4%)一致。该系统可以成为一种有效的工具来研究气腔形成行为,并有助于理解该现象的机制和控制因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b8c/9199520/bfa543ef32bd/ab1c01429_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验