Meineke Christian, Prager Michael, Hayes Johannes, Wen Qiannan, Kastner Lukas Zheyi, Schuh Dieter, Fritsch Kilian, Pronin Oleg, Stein Markus, Schäfer Felix, Chatterjee Sangam, Kira Mackillo, Huber Rupert, Bougeard Dominique
Department of Physics, University of Regensburg, 93040, Regensburg, Germany.
Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA.
Light Sci Appl. 2022 May 23;11(1):151. doi: 10.1038/s41377-022-00824-6.
Intense phase-locked terahertz (THz) pulses are the bedrock of THz lightwave electronics, where the carrier field creates a transient bias to control electrons on sub-cycle time scales. Key applications such as THz scanning tunnelling microscopy or electronic devices operating at optical clock rates call for ultimately short, almost unipolar waveforms, at megahertz (MHz) repetition rates. Here, we present a flexible and scalable scheme for the generation of strong phase-locked THz pulses based on shift currents in type-II-aligned epitaxial semiconductor heterostructures. The measured THz waveforms exhibit only 0.45 optical cycles at their centre frequency within the full width at half maximum of the intensity envelope, peak fields above 1.1 kV cm and spectral components up to the mid-infrared, at a repetition rate of 4 MHz. The only positive half-cycle of this waveform exceeds all negative half-cycles by almost four times, which is unexpected from shift currents alone. Our detailed analysis reveals that local charging dynamics induces the pronounced positive THz-emission peak as electrons and holes approach charge neutrality after separation by the optical pump pulse, also enabling ultrabroadband operation. Our unipolar emitters mark a milestone for flexibly scalable, next-generation high-repetition-rate sources of intense and strongly asymmetric electric field transients.
强锁相太赫兹(THz)脉冲是太赫兹光波电子学的基石,其中载波场会产生一个瞬态偏置,以便在亚周期时间尺度上控制电子。诸如太赫兹扫描隧道显微镜或以光时钟速率运行的电子设备等关键应用,需要在兆赫兹(MHz)重复率下产生极短、几乎为单极性的波形。在此,我们提出了一种基于II型取向外延半导体异质结构中的位移电流来产生强锁相太赫兹脉冲的灵活且可扩展的方案。所测量的太赫兹波形在强度包络的半高全宽内,其中心频率处仅呈现0.45个光学周期,峰值场强高于1.1 kV/cm,且频谱分量可达中红外,重复率为4 MHz。该波形唯一的正半周期比所有负半周期高出近四倍,这仅靠位移电流是无法预料的。我们的详细分析表明,当电子和空穴在光泵浦脉冲作用下分离后接近电荷中性时,局部充电动力学诱导出明显的正太赫兹发射峰,这也实现了超宽带运行。我们的单极发射器标志着一个里程碑,它为灵活可扩展的下一代高重复率、强且强不对称电场瞬态源奠定了基础。