Suppr超能文献

基于Q学习算法和神经网络的用于脉冲快中子活化分析应用的热中子束优化

Thermal neutron beam optimization for PGNAA applications using Q-learning algorithm and neural network.

作者信息

Zolfaghari Mona, Masoudi S Farhad, Rahmani Faezeh, Fathi Atefeh

机构信息

Department of Physics, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran.

出版信息

Sci Rep. 2022 May 23;12(1):8635. doi: 10.1038/s41598-022-12187-4.

Abstract

As a powerful, non-destructive analysis tool based on thermal neutron capture reaction, prompt gamma neutron activation analysis (PGNAA) indeed requires the appropriate neutron source. Neutrons produced by electron Linac-based neutron sources should be thermalized to be appropriate for PGNAA. As a result, thermalization devices (TDs) are used for the usual fast neutron beam to simultaneously maximize the thermal neutron flux and minimize the non- thermal neutron flux at the beam port of TD. To achieve the desired thermal neutron flux, the optimized geometry of TD including the proper materials for moderators and collimator, as well as the optimized dimensions are required. In this context, TD optimization using only Monte Carlo approaches such as MCNP is a multi-parameter problem and time-consuming task. In this work, multilayer perceptron (MLP) neural network has been applied in combination with Q-learning algorithm to optimize the geometry of TD containing collimator and two moderators. Using MLP, both thickness and diameter of the collimator at the beam port of TD have first been optimized for different input electron energies of Linac as well as for moderators' thickness values and the collimator. Then, the MLP has been learned by the thermal and non-thermal neutron flux simultaneously at the beam port of TD calculated by MCNPX2.6 code. After selecting the optimized geometry of the collimator, a combination of Q-learning algorithm and MLP artificial neural network have been used to find the optimal moderators' thickness for different input electron energies of Linac. Results verify that the final optimum setup can be obtained based on the prepared dataset in a considerably smaller number of simulations compared to conventional calculation methods as implemented in MCNP.

摘要

作为一种基于热中子俘获反应的强大无损分析工具,瞬发伽马中子活化分析(PGNAA)确实需要合适的中子源。基于电子直线加速器的中子源产生的中子应进行热化处理,以适用于PGNAA。因此,热化装置(TDs)用于通常的快中子束,以在TD的束流端口同时最大化热中子通量并最小化非热中子通量。为了获得所需的热中子通量,需要TD的优化几何结构,包括慢化剂和准直器的合适材料以及优化尺寸。在这种情况下,仅使用蒙特卡罗方法(如MCNP)进行TD优化是一个多参数问题且耗时。在这项工作中,多层感知器(MLP)神经网络已与Q学习算法结合应用,以优化包含准直器和两个慢化剂的TD的几何结构。使用MLP,首先针对直线加速器的不同输入电子能量以及慢化剂厚度值和准直器,对TD束流端口处准直器的厚度和直径进行了优化。然后,通过MCNPX2.6代码计算的TD束流端口处的热中子通量和非热中子通量同时对MLP进行训练。在选择了准直器的优化几何结构后,Q学习算法和MLP人工神经网络相结合,用于找到直线加速器不同输入电子能量下慢化剂的最佳厚度。结果验证,与MCNP中实现的传统计算方法相比,基于准备好的数据集,可以在相当少的模拟次数下获得最终的最佳设置。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89d9/9126936/1c2758dd935b/41598_2022_12187_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验