Cevallos-Robalino Lenin E, García-Fernández Gonzalo F, Lorente Alfredo, Gallego Eduardo, Vega-Carrillo Hector Rene, Guzmán-Garcia Karen A
Departamento de Ingeniería Energética, ETSI Industriales, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, 28006, Madrid, Spain; Grupo de Investigación En Sistemas de Control Y Robótica, GISCOR, Universidad Politécnica Salesiana, C. Robles 107 Chambers, 090108, Guayas, Guayaquil, Ecuador.
Departamento de Ingeniería Energética, ETSI Industriales, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, 28006, Madrid, Spain.
Appl Radiat Isot. 2019 Sep;151:19-24. doi: 10.1016/j.apradiso.2019.04.041. Epub 2019 May 1.
Neutron techniques to characterize materials have a wide range of applications, one of the major developments being the identification of terrorist threats with chemical, biological, radiological, nuclear and explosives (CBRNE) materials. In this work, a thermal neutron irradiation system, using aAm/Be source of 111 GBq inside polyethylene cylindrical moderators, has been designed, built and tested. The geometry of moderator and the neutron source position were fixed trying to maximize the thermal neutrons flux emitted from the system. Therefore, the system is in fact a thermalized neutron source taking advantage of the backscattered neutrons, achieving thermal fluence rates of up to 5.3x10 cm s, with dominantly thermal spectra. Samples can be placed there for several hours and thereafter be measured to identify their component elements by NAA (Neutron Activation Analysis). Through Monte Carlo techniques employing the MCNP6 code (Pelowitz et al., 2014), four different configurations with polyethylene cylinders were simulated to choose the most adequate geometry. The theoretical model was then replicated in the neutronics hall of the Neutron Measurements Laboratory of the Energy Engineering Department of Universidad Politécnica de Madrid (LMN-UPM), carrying out experimental measurements using a BF neutron detector. A high agreement between MCNP6 results and the experimental values measured was observed. Consequently, the system developed could be employed in future laboratory experiments, both for the identification of trace substances by NAA and for the calibration of neutron detection equipment.
用于材料表征的中子技术有广泛的应用,其中一个主要进展是利用化学、生物、放射、核和爆炸物(CBRNE)材料识别恐怖主义威胁。在这项工作中,设计、建造并测试了一个热中子辐照系统,该系统在聚乙烯圆柱形慢化剂内部使用111 GBq的镅/铍源。固定慢化剂的几何形状和中子源位置,试图使系统发射的热中子通量最大化。因此,该系统实际上是一个利用背散射中子的热中子源,热注量率高达5.3×10 cm² s⁻¹,具有主要为热中子的能谱。样品可以放置在那里几个小时,然后通过中子活化分析(NAA)测量以识别其组成元素。通过使用MCNP6代码(Pelowitz等人,2014年)的蒙特卡罗技术,模拟了四种不同的聚乙烯圆柱体配置,以选择最合适的几何形状。然后在马德里理工大学能源工程系中子测量实验室(LMN - UPM)的中子学大厅中复制该理论模型,使用BF中子探测器进行实验测量。观察到MCNP6结果与测量的实验值之间有高度一致性。因此,开发的该系统可用于未来的实验室实验,既用于通过NAA识别痕量物质,也用于中子检测设备的校准。