Suppr超能文献

使用瞬发伽马射线中子活化数据对放射性元素进行分类的机器学习方法比较。

A comparison of machine learning methods to classify radioactive elements using prompt-gamma-ray neutron activation data.

机构信息

Faculty of Engineering, Environment and Computing, Coventry University, Priory Street, Coventry, CV1 5FB, UK.

Factory of the Future Advanced Manufacturing Park, University of Sheffield AMRC, Wallis Way, Catcliffe, Rotherham, S60 5TZ, UK.

出版信息

Sci Rep. 2023 Jun 19;13(1):9948. doi: 10.1038/s41598-023-36832-8.

Abstract

The detection of illicit radiological materials is critical to establishing a robust second line of defence in nuclear security. Neutron-capture prompt-gamma activation analysis (PGAA) can be used to detect multiple radioactive materials across the entire Periodic Table. However, long detection times and a high rate of false positives pose a significant hindrance in the deployment of PGAA-based systems to identify the presence of illicit substances in nuclear forensics. In the present work, six different machine-learning algorithms were developed to classify radioactive elements based on the PGAA energy spectra. The model performance was evaluated using standard classification metrics and trend curves with an emphasis on comparing the effectiveness of algorithms that are best suited for classifying imbalanced datasets. We analyse the classification performance based on Precision, Recall, F1-score, Specificity, Confusion matrix, ROC-AUC curves, and Geometric Mean Score (GMS) measures. The tree-based algorithms (Decision Trees, Random Forest and AdaBoost) have consistently outperformed Support Vector Machine and K-Nearest Neighbours. Based on the results presented, AdaBoost is the preferred classifier to analyse data containing PGAA spectral information due to the high recall and minimal false negatives reported in the minority class.

摘要

非法放射性材料的检测对于建立核安全的强大第二道防线至关重要。中子俘获瞬发伽马激活分析(PGAA)可用于探测整个元素周期表中的多种放射性物质。然而,较长的检测时间和高误报率在将基于 PGAA 的系统部署用于核取证中识别非法物质的存在方面构成了重大障碍。在本工作中,开发了六种不同的机器学习算法,以根据 PGAA 能谱对放射性元素进行分类。使用标准分类指标和趋势曲线评估模型性能,重点比较最适合分类不平衡数据集的算法的有效性。我们根据精度、召回率、F1 分数、特异性、混淆矩阵、ROC-AUC 曲线和几何平均值分数(GMS)度量来分析分类性能。基于树的算法(决策树、随机森林和自适应增强)的性能始终优于支持向量机和 K-最近邻。根据呈现的结果,由于在少数类别中报告的高召回率和最小的假阴性,自适应增强是分析包含 PGAA 光谱信息的数据的首选分类器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验