Suppr超能文献

使用 3D 打印的人体头颈部模型验证蒙特卡罗 I 放射性药物剂量学工作流程。

Validation of Monte Carlo I radiopharmaceutical dosimetry workflow using a 3D-printed anthropomorphic head and neck phantom.

机构信息

Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA.

Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA.

出版信息

Med Phys. 2022 Aug;49(8):5491-5503. doi: 10.1002/mp.15699. Epub 2022 Jun 6.

Abstract

PURPOSE

Approximately 50% of head and neck cancer (HNC) patients will experience loco-regional disease recurrence following initial courses of therapy. Retreatment with external beam radiotherapy (EBRT) is technically challenging and may be associated with a significant risk of irreversible damage to normal tissues. Radiopharmaceutical therapy (RPT) is a potential method to treat recurrent HNC in conjunction with EBRT. Phantoms are used to calibrate and add quantification to nuclear medicine images, and anthropomorphic phantoms can account for both the geometrical and material composition of the head and neck. In this study, we present the creation of an anthropomorphic, head and neck, nuclear medicine phantom, and its characterization for the validation of a Monte Carlo, SPECT image-based, I RPT dosimetry workflow.

METHODS

3D-printing techniques were used to create the anthropomorphic phantom from a patient CT dataset. Three I SPECT/CT imaging studies were performed using a homogeneous, Jaszczak, and an anthropomorphic phantom to quantify the SPECT images using a GE Optima NM/CT 640 with a high energy general purpose collimator. The impact of collimator detector response (CDR) modeling and volume-based partial volume corrections (PVCs) upon the absorbed dose was calculated using an image-based, Geant4 Monte Carlo RPT dosimetry workflow and compared against a ground truth scenario. Finally, uncertainties were quantified in accordance with recent EANM guidelines.

RESULTS

The 3D-printed anthropomorphic phantom was an accurate re-creation of patient anatomy including bone. The extrapolated Jaszczak recovery coefficients were greater than that of the 3D-printed insert (∼22.8 ml) for both the CDR and non-CDR cases (with CDR: 0.536 vs. 0.493, non-CDR: 0.445 vs. 0.426, respectively). Utilizing Jaszczak phantom PVCs, the absorbed dose was underpredicted by 0.7% and 4.9% without and with CDR, respectively. Utilizing anthropomorphic phantom recovery coefficient overpredicted the absorbed dose by 3% both with and without CDR. All dosimetry scenarios that incorporated PVC were within the calculated uncertainty of the activity. The uncertainties in the cumulative activity ranged from 23.6% to 106.4% for Jaszczak spheres ranging in volume from 0.5 to 16 ml.

CONCLUSION

The accuracy of Monte Carlo-based dosimetry for I RPT in HNC was validated with an anthropomorphic phantom. In this study, it was found that Jaszczak-based PVCs were sufficient. Future applications of the phantom could involve 3D printing and characterizing patient-specific volumes for more personalized RPT dosimetry estimates.

摘要

目的

大约 50%的头颈部癌症(HNC)患者在初始治疗后会出现局部区域疾病复发。重新进行外部束放射治疗(EBRT)在技术上具有挑战性,并且可能与对正常组织造成不可逆转损害的风险显著相关。放射性药物治疗(RPT)是一种与 EBRT 联合治疗复发性 HNC 的潜在方法。体模用于校准和为核医学图像添加定量信息,并且人体模型可以同时考虑头颈部的几何形状和材料组成。在这项研究中,我们介绍了创建人体模型、头颈部、核医学体模的方法,并对其进行了特征描述,以验证基于蒙特卡罗、SPECT 图像的 I RPT 剂量计算工作流程。

方法

使用 3D 打印技术从患者的 CT 数据集创建人体模型。使用同质、Jaszczak 和人体模型进行了三次 I SPECT/CT 成像研究,使用具有高能通用准直器的 GE Optima NM/CT 640 对 SPECT 图像进行定量。使用基于图像的 Geant4 蒙特卡罗 RPT 剂量计算工作流程计算了探测器响应(CDR)建模和基于体积的部分体积校正(PVC)对吸收剂量的影响,并与真实场景进行了比较。最后,根据最近的 EANM 指南对不确定性进行了量化。

结果

3D 打印的人体模型是患者解剖结构的精确再现,包括骨骼。对于 CDR 和非 CDR 情况,体外 Jaszczak 恢复系数均大于 3D 打印插件(分别为∼22.8 ml)(CDR:0.536 与 0.493,非 CDR:0.445 与 0.426)。不使用和使用 CDR 时,使用 Jaszczak 体模 PVC,吸收剂量的预测值分别低 0.7%和 4.9%。使用人体模型恢复系数会使吸收剂量的预测值增加 3%,无论是否使用 CDR。所有包含 PVC 的剂量计算方案都在活性的计算不确定性范围内。累积活性的不确定性范围为 23.6%至 106.4%,用于体积为 0.5 至 16 ml 的 Jaszczak 球体。

结论

使用人体模型验证了基于蒙特卡罗的 I RPT 在 HNC 中的剂量计算的准确性。在这项研究中,发现基于 Jaszczak 的 PVC 是足够的。该体模的未来应用可以包括 3D 打印和表征患者特定体积,以进行更个性化的 RPT 剂量估算。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed16/9545692/30ded1edccca/MP-49-5491-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验